

 JAVA PROGRAMMING

Lecture Notes

B.TECH
(III YEAR – I SEM)

(2022-23)

Prepared by:

Mrs. G.VAIDEHI, Assistant Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Kompally),Secunderabad–500100,TelanganaState,India

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

IIIYearB.Tech.ECE-I Sem L/T/P/C

3/-/-/3
 (R20A0552) JAVA PROGRAMMING

 COURSE OBJECTIVES:

1) To create Java programs that leverage the object-oriented features of the Java language, such

as encapsulation, inheritance and polymorphism;

2) Use data types, arrays and strings;

3) Implement error-handling techniques using exception handling,

4) To know about Applets and Event Handling

5) Create and event-driven GUI using AWT components.

UNIT I:

Java Programming-OOP Concepts, History of Java, Java buzzwords, Data types, Variables,

Constants, Scope and Life time of variables, Operators, Type conversion and casting, Control

Flow Statements, simple java programs, concepts of classes, objects, arrays, strings,

constructors, methods, access control, this keyword, overloading methods and constructors,

garbage collection, recursion.

UNIT II:

Inheritance – Types of Inheritance, super keyword, and preventing inheritance: final classes

and methods.

Polymorphism – Dynamic binding, method overriding, abstract classes and methods.

Interfaces-Interfaces Vs Abstract classes, defining an interface, implement interfaces,

extending interface.

Packages- Defining, creating and accessing a package, importing packages.

UNIT III:

Exception handling - Benefits of exception handling, exception hierarchy, Classification of

exceptions - checked exceptions and unchecked exceptions, usage of try, catch, throw, throws

and finally, built in exceptions.

Multi-threading- Differences between multi-threading and multitasking, thread life cycle,

creating threads, synchronizing threads.

UNIT IV

Applets – Concepts of Applets, differences between applets and applications, life cycle of an

applet, types of applets, creating applets, passing parameters to applets.

Event Handling: Events, Handling mouse and keyboard events.

Files- Streams, Byte streams, Character streams, Text input/output

UNIT V

GUI Programming with Java – AWT class hierarchy, AWT controls - Labels, button, text

field, check box, and graphics. Layout Manager – Layout manager types: border, grid and flow.

Swing – Introduction, limitations of AWT, Swing vs AWT.

TEXT BOOKS:
1) Java- The Complete Reference, 7th edition, Herbert schildt,TMH.

2) Understanding OOP with Java, updated edition, T. Budd, Pearsoneducation.

3) Core Java an integrated approach, dreamtech publication, Dr. R.NageswaraRao.

REFERENCE BOOKS:
1) Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to

Program,P.J.Deitel and H.M.Deitel, PHI

2) Object Oriented Programming through Java, P. Radha Krishna, Universities Press.

COURSE OUTCOMES:
1) An understanding of the principles and practice of object-oriented programming anddesign

in the construction of robust, maintainable programs which satisfy theirrequirements;

2) A competence to design, write, compile, test and execute straightforward programsusinga

high-level language;

3) An awareness of the need for a professional approach to design and the importance of good

documentation to the finished programs.

4) Be able to make use of members of classes found in the Java API.

5) Demonstrate the ability to employ various types of constructs and a hierarchy of Javaclasses

to provide solution to a given set of requirements.

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

INDEX

S. No Unit Topic Page no

1

I
OOP Concepts:- Data abstraction, encapsulation inheritance 1

2

I
Benefits of Inheritance 2

3 I Polymorphism, classes and objects 2

4 I Procedural and object oriented programming paradigms 3

5 I Java Programming- History of Java 4

6 I Comments, Data types, Variables, Constants 5-9

7 I Scope and Lifetime of variables 10

8 I Operators, Operator Hierarchy, Expressions 11-12

9 I Type conversion and casting 12-13

10 I
Control flow- block scope, conditional statements, loops, break
and continue statements

13-14

11 I Simple java stand alone programs, arrays 14-18

12 I Console input and output, formatting output 18-19

13 I Constructors, methods, parameter passing 19-20

14 I Static fields and methods, access control, this reference, 21-30

15 I
Overloading methods and constructors, recursion, garbage

collection,
30-34

16 I
Building strings, exploring string class.

34-36

S. No Unit Topic Page no

17 II
Inheritance – Inheritance hierarchies super and sub classes,
Member access rules

37-40

18 II
super keyword, preventing inheritance: final classes and

methods, the Object class and its methods.
40-41

19 II Polymorphism – dynamic binding, method overriding, 41-42

20 II abstract classes and methods. 43

21 II
Interfaces- Interfaces Vs Abstract classes, defining an

interface, implement interfaces
43-44

22 II
Accessing implementations through interface references,

extendinginterface.
45

23 II Inner classes- Uses of inner classes, local inner classes 45-46

24 II Anonymous inner classes, static inner classes, examples. 46

25

II Packages- Defining, creating and accessing a package, 46-47

26 II Understanding CLASSPATH, importing packages. 47

27 III
Exception handling- Dealing with errors, benefits of exception

handling
48

28 III
The classification of exceptions- exception hierarchy, checked

exceptions and unchecked exceptions
48-50

29 III Usage of try, catch, throw, throws and finally, 50-54

30 III Built in exceptions, creating own exception sub classes. 54

31 III
Multithreading – Differences between multiple processes and
multiple threads, thread states

55-56

32 III
Creating threads, interrupting threads, thread priorities,
synchronizing threads

56-59

S. No Unit Topic Page no

33 IV Applets – Inheritance hierarchy for applets 61

34 IV
Differences between applets and applications, Life cycle of an

applet
62-64

35 IV Passing parameters to applets, applet security issues. 65-66

36 IV
Event Handling- Events, Event sources, Event classes, Event

Listeners,
66-67

37 IV
Relationship between Event sources and Listeners, Delegation

event model,
68-70

38 IV
Handling a button click, Handling Mouse events.

71-74

39

IV

Files- Streams- Byte streams, Character streams, Text
input/output, Binary input/output 75-79

40

V

GUI Programming with Java- The AWT class hierarchy,
AWT classes 80-81

41 V Layout management – Layout manager types – border, grid and

flow

82-87

42 V Overview of some AWT Controls – Button, Label, TextField,

TextArea, Checkbox and graphics

88-103

43 V
Swing – Introduction, limitations of AWT, Swing vs
AWT.

104-108

JAVA PROGRAMMING Page 1

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

Unit-1

OOPs Concepts

Object Oriented Programming is a paradigm that provides many concepts such as

inheritance, data binding, polymorphism etc.

Simula is considered as the first object-oriented programming language. The programming paradigm

where everything is represented as an object is known as truly object-oriented programming language.

Smalltalk is considered as the first truly object-oriented programming language.

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is a

methodology or paradigm to design a program using classes and objects. It simplifies the software

development and maintenance by providing someconcepts:

o Object

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table,

keyboard, bike etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviours of parent object i.e. known as

inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

JAVA PROGRAMMING Page 2

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example: to

convince the customer differently, to draw something e.g. shape or rectangle etc.

In java, we use method overloading and method overriding to achieve polymorphism. Another example

can be to speak something e.g. cat speaks meaw, dog barks woof etc.

Abstraction
Hiding internal details and showing functionality is known as abstraction. For example: phone

call, we don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.

Encapsulation
Binding (or wrapping) code and data together into a single unit is known as encapsulation. For

example: capsule, it is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all the data

members are private here.

Benefits of Inheritance

 One of the key benefits of inheritance is to minimize the amount of duplicate code in an

application by sharing common code amongst several subclasses. Where equivalent code

exists in two related classes, the hierarchy can usually be refactored to move the common

code up to a mutual superclass. This also tends to result in a better organization of code and

smaller, simpler compilationunits.

 Inheritance can also make application code more flexible to change because classesthat

inherit from a common superclass can be used interchangeably. If the return type of a

method issuperclass

 Reusability - facility to use public methods of base class without rewriting thesame.

 Extensibility - extending the base class logic as per business logic of the derivedclass.

JAVA PROGRAMMING Page 3

 Data hiding - base class can decide to keep some data private so that it cannot be altered by the derived

class

Procedural and object oriented programming paradigms

JAVA PROGRAMMING Page 4

Java Programming- History of Java

The history of java starts from Green Team. Java team members (also known

as Green Team), initiated a revolutionary task to develop a language for digital

devices such as set-top boxes, televisionsetc.

For the green team members, it was an advance concept at that time. But, it was

suited for internet programming. Later, Java technology as incorporated by

Netscape.

Currently, Java is used in internet programming, mobile devices, games, e-business

solutions etc. There are given the major points that describes the history of java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java

language project in June 1991. The small team of sun engineers called Green

Team.

2) Originally designed for small, embedded systems in electronic appliances like set-

topboxes.

3) Firstly, it was called "Greentalk" by James Gosling and file extension was.gt.

4) After that, it was called Oak and was developed as a part of the Green

project.

Java Version History

There are many java versions that has been released. Current stable release of Java

is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep,2004)

8. Java SE 6 (11th Dec,2006)

9. Java SE 7 (28th July, 2011)

10.Java SE 8 (18th March,2014)

JAVA PROGRAMMING Page 5

Features of Java
There is given many features of java. They are also known as java buzzwords. The Java Features given below are simple

and easy to understand.

1. Simple

2. Object-Oriented

3. Portable

4. Platformindependent

5. Secured

6. Robust

7. Architectureneutral

8. Dynamic

9. Interpreted

10. HighPerformance

11. Multithreaded

12. Distributed

Java Comments

The java comments are statements that are not executed by the compiler and interpreter. The

comments can be used to provide information or explanation about the variable, method, class or

any statement. It can also be used to hide program code for specific time.

Types of Java Comments
There are 3 types of comments in java.

1. Single LineComment

2. Multi LineComment

3. DocumentationComment

Java Single Line Comment

The single line comment is used to comment only one line.

Syntax:

1. //This is single line comment

JAVA PROGRAMMING Page 6

Example:

public class CommentExample1 {

public static void main(String[] args) {

int i=10;//Here, i is a variable

System.out.println(i);

}

}

Output:

Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/* This is

multi line comment

*/

Example:

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and print variable in java.*/

inti=10; System.out.println(i);

} }

Output:

10

10

JAVA PROGRAMMING Page 7

Java Documentation Comment

The documentation comment is used to create documentation API. To create documentation API, you need

to use javadoc tool.

Syntax:

/**

This

is

documentation

comment

*/

Example:

/** The Calculator class provides methods to get addition and subtraction of given 2 numbers.*/

public class Calculator {

/** The add() method returns addition of given numbers.*/

public static int add(int a, int b){return a+b;}

/** The sub() method returns subtraction of given numbers.*/

public static int sub(int a, int b){return a-b;}

}

Compile it by javac tool:

Create Documentation API by javadoc tool:

Now, there will be HTML files created for your Calculator class in the current directory. Open the HTML

files and see the explanation of Calculator class provided through documentation comment.

javac Calculator.java

javadoc Calculator.java

JAVA PROGRAMMING Page 8

Data Types

Data types represent the different values to be stored in the variable. In java, there are two types of data types:

o Primitive datatypes

o Non-primitive datatypes

DataType DefaultValue Default size

boolean

False

1 bit

char

'\u0000'

2 byte

byte

0

1 byte

short

0

2 byte

int

0

4 byte

long

0L

8 byte

float

0.0f

4 byte

double

0.0d

8 byte

Java Variable Example: Add Two Numbers

class Simple{
public static void main(String[] args){
int a=10;

int b=10;

int c=a+b;

System.out.println(c);

}}

Output:20

JAVA PROGRAMMING Page 9

Variables and Data Types in Java

Variable is a name of memory location. There are three types of variables in java: local, instance and static.

There are two types of data types in java: primitive and non-primitive.

Types of Variable
There are three types of variables in java:

o localvariable

o instancevariable

o staticvariable

1) LocalVariable

A variable which is declared inside the method is called local variable.

2) Instance Variable

A variable which is declared inside the class but outside the method, is called instance variable. It is not

declared as static.

3) Staticvariable

A variable that is declared as static is called static variable. It cannot be local. We will have detailed learning

of these variables in next chapters.

Example to understand the types of variables in java

class A{
int data=50;//instance variable

static int m=100;//static variable

void method(){

int n=90;//local variable

}

}//end of class

Constants in Java

A constant is a variable which cannot have its value changed after declaration. It uses the 'final'

keyword.

Syntax

modifierfinal dataType variableName = value; //global constant

modifierstatic final dataType variableName = value; //constant within a c

JAVA PROGRAMMING Page 10

Scope and Life Time of Variables

The scope of a variable defines the section of the code in which the variable is visible. As a

general rule, variables that are defined within a block are not accessible outside that block.

The lifetime of a variable refers to how long the variable exists before it isdestroyed.

Destroying variables refers to deallocating the memory that was allotted to the variables when

declaring it. We have written a few classes till now. You might have observed that not all

variables are the same. The ones declared in the body of a method were different from those

that were declared in the class itself. There are three types of variables: instance variables,

formal parameters or local variables and localvariables.

Instance variables

Instance variables are those that are defined within a class itself and not in any method or

constructor of the class. They are known as instance variables because every instance of the

class (object) contains a copy of these variables. The scope of instance variables is determined

by the access specifier that is applied to these variables. We have already seen about it earlier.

The lifetime of these variables is the same as the lifetime of the object to which it belongs.

Object once created do not exist for ever. They are destroyed by the garbage collector of Java

when there are no more reference to that object. We shall see about Java's automatic garbage

collector later on.

Argument variables

These are the variables that are defined in the header oaf constructor or a method. The scope

of these variables is the method or constructor in which they are defined. The lifetime is

limited to the time for which the method keeps executing. Once the method finishes

execution, these variables aredestroyed.

Local variables

A local variable is the one that is declared within a method or a constructor (not in the

header). The scope and lifetime are limited to the methoditself.

One important distinction between these three types of variables is that access specifiers can

be applied to instance variables only and not to argument or local variables.

In addition to the local variables defined in a method, we also have variables that are defined

in bocks life an if block and an else block. The scope and is the same as that of the block

itself.

JAVA PROGRAMMING Page 11

Operators in java

Operator in java is a symbol that is used to perform operations. For example: +, -, *, / etc. There are

many types of operators in java which are given below:

o UnaryOperator,

o ArithmeticOperator,

o shiftOperator,

o RelationalOperator,

o BitwiseOperator,

o LogicalOperator,

o Ternary Operatorand

o AssignmentOperator.

Operators Hierarchy

JAVA PROGRAMMING Page 12

Expressions
Expressions are essential building blocks of any Java program, usually created to produce a new value,

although sometimes an expression simply assigns a value to a variable. Expressions are built using values,

variables, operators and method calls.

Types of Expressions

While an expression frequently produces a result, it doesn't always. There are three types of expressions in

Java:

 Those that produce a value, i.e. the result of (1 + 1)

 Those that assign a variable, for example (v =10)

 Those that have no result but might have a "side effect" because an expression can include

a wide range of elements such as method invocations or increment operators that modify

the state (i.e. memory) of aprogram.

Java Type casting and Type conversion

Widening or Automatic Type Conversion

Widening conversion takes place when two data types are automatically converted. This happens when:

 The two data types arecompatible.

 When we assign value of a smaller data type to a bigger datatype.

For Example, in java the numeric data types are compatible with each other but no automatic

conversion is supported from numeric type to char or boolean. Also, char and boolean are not

compatible with each other.

Narrowing or Explicit Conversion

If we want to assign a value of larger data type to a smaller data type we perform explicit type

casting or narrowing.

 This is useful for incompatible data types where automatic conversion cannot bedone.

 Here, target-type specifies the desired type to convert the specified valueto.

https://www.thoughtco.com/variable-2034325

JAVA PROGRAMMING Page 13

Control Flow Statements

The control flow statements in Java allow you to run or skip blocks of code when special conditions are

met.

The “if” Statement

The “if” statement in Java works exactly like in most programming languages. With the help of “if” you

can choose to execute a specific block of code when a predefined condition is met. The structure of the “if”

statement in Java looks like this:

if(condition) {

// execute this code

}

JAVA PROGRAMMING Page 14

The condition is Boolean. Boolean means it may be true or false. For example you may put a mathematical

equation as condition. Look at this full example:

Creating a Stand-Alone Java Application

1. Write a main method that runs your program. You can write this method anywhere. In this

example, I'll write my main method in a class called Main that has no other methods. For

example:

2. public class Main
3. {

4. public static void main(String[] args) 5. {

6. Game.play();

7. } }

8. Make sure your code is compiled, and that you have tested it thoroughly.
9. If you're using Windows, you will need to set your path to include Java, if you haven't

done so already. This is a delicate operation. Open Explorer, and look inside

C:\ProgramFiles\Java, and you should see some version of the JDK. Open this folder, and

then open the bin folder. Select the complete path from the top of the Explorer window, and

press Ctrl-C to copyit.

Next, find the "My Computer" icon (on your Start menu or desktop), right-click it, and select properties.

Click on the Advanced tab, and then click on the Environment variables button. Look at the variables listed

for all users, and click on the Path variable. Do not delete the contents of this variable! Instead, edit the

contents by moving the cursor to the right end, entering a semicolon (;), and pressing Ctrl-V to paste the

path you copied earlier. Then go ahead and save your changes. (If you have any Cmd windows open, you

will need to close them.)

10. If you're using Windows, go to the Start menu and type "cmd" to run a program that

brings up a command prompt window. If you're using a Mac or Linux machine, run the

Terminal program to bring up a commandprompt.

11. In Windows, type dir at the command prompt to list the contents of the current directory.

On a Mac or Linux machine, type ls to dothis.

JAVA PROGRAMMING Page 15

12. Now we want to change to the directory/folder that contains your compiled code. Look at

the listing of sub-directories within this directory, and identify which one contains your code.

Type cd followed by the name of that directory, to change to that directory. For example, to

change to a directory called Desktop, you would type:

cd Desktop

To change to the parent directory, type:

cd ..

Every time you change to a new directory, list the contents of that directory to see where to go next.

Continue listing and changing directories until you reach the directory that contains your .class files.

13. If you compiled your program using Java 1.6, but plan to run it on a Mac, you'll needto

recompile your code from the command line, bytyping:

javac -target 1.5 *.java

14. Now we'll create a single JAR file containing all of the files needed to run yourprogram.

Arrays
Java provides a data structure, the array, which stores a fixed-size sequential collection of elements of the

same type. An array is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one

array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent

individual variables.

This tutorial introduces how to declare array variables, create arrays, and process arrays using indexed

variables.

Declaring Array Variables:

To use an array in a program, you must declare a variable to reference the array, and you must specify the

type of array the variable can reference. Here is the syntax for declaring an array variable:

Note: The styledataType[] arrayRefVar is preferred. The style dataType arrayRefVar[]
comes from the C/C++ language and was adopted in Java to accommodate C/C++programmers.

Example:

dataType[] arrayRefVar; // preferred way. or

dataType arrayRefVar[]; // works but not preferred way.

JAVA PROGRAMMING Page 16

The following code snippets are examples of this syntax:

double[] List;

or

double List[];

Creating

Arrays:

// preferred way.

// works but not preferred way.

You can create an array by using the new operator with the following syntax:

The above statement does two things:

 It creates an array using newdataType[arraySize];

 It assigns the reference of the newly created array to the variablearrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the variable can be

combined in one statement, as shown below:

Alternatively you can create arrays as follows:

The array elements are accessed through the index. Array indices are 0-based; that is, they start from 0 to

arrayRefVar.length-1.

Example:

Following statement declares an array variable, myList, creates an array of 10 elements of double type and

assigns its reference tomyList:

Following picture represents array myList. Here, myList holds ten double values and the indices are from 0

to 9.

arrayRefVar= new dataType[arraySize];

dataType[] arrayRefVar = new dataType[arraySize];

dataType[] arrayRefVar = {value0, value1, ..., valuek};

double[] myList = new double[10];

JAVA PROGRAMMING Page 17

Processing Arrays:

When processing array elements, we often use either for loop or for each loop because all of the elements in

an array are of the same type and the size of the array is known.

Example:

Here is a complete example of showing how to create, initialize and process arrays:

public class TestArray

{

public static void main(String[] args) { double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements for (int i = 0; i <myList.length; i++){

System.out.println(myList[i] + " ");

}

// Summing all elements double total = 0;

for(int i = 0; i <myList.length; i++) { total += myList[i];

}

System.out.println("Total is " + total);

// Finding the largest element double max = myList[0];

for(int i = 1; i <myList.length; i++) { if (myList[i] >max) max = myList[i];

}

System.out.println("Max is " + max);

}

}

JAVA PROGRAMMING Page 18

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

This would produce the following result:

public class TestArray {

public static void main(String[] args) { double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements for(double element: myList) {

System.out.println(element);

}}}

JAVA PROGRAMMING Page 19

Constructors

Constructor in java is a special type of method that is used to initialize the object.

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data

for the object that is why it is known as constructor.

There are basically two rules defined for the constructor.

1. Constructor name must be same as its classname

2. Constructor must have no explicit returntype

Types of java constructors

There are two types of constructors:

1. Default constructor (no-argconstructor)

2. Parameterizedconstructor

Java Default Constructor

A constructor that have no parameter is known as default constructor.

Syntax of default constructor:

1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of object

creation.

classBike1{
Bike1(){System.out.println("Bike is created");}

public static void main(String args[]){

Bike1 b=new Bike1();

} }

 Output:Bike is created

JAVA PROGRAMMING Page 20

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We can have any

number of parameters in the constructor.

classStudent4{
int id;

Stringname;

Student4(int i,String n){

 id = i;

name = n;

}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan"); s1.display();

s2.display();

} }

Output:

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any number of constructors that

differ in parameter lists.The compiler differentiates these constructors by taking into account the number of

parameters in the list and their type.

Example of Constructor Overloading

classStudent5{

intid; String

name;

intage;
Student5(int i,String n){ id = i;

name = n;

}

Student5(int i,String n,int a){

id = i;

name = n; age=a;

}

voiddisplay(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

 s1.display();

111Karan 222Aryan

JAVA PROGRAMMING Page 21

s2.display();

} }

Output:

Java CopyConstructor

There is no copy constructor in java. But, we can copy the values of one object to another like copy

constructor inC++.

There are many ways to copy the values of one object into another in java. They are:

oBy constructor

oBy assigning the values of one object into another

oBy clone() method of Object class

In this example, we are going to copy the values of one object into another using java constructor.

classStudent6{ intid; Stringname;

Student6(int i,String n){ id = i;

name = n;

}

Student6(Student6 s){ id = s.id;

name =s.name;

}

voiddisplay(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student6 s1 = new Student6(111,"Karan");

Student6 s2 = new Student6(s1);

s1.display();

s2.display();

} }

Output:

111 Karan 0

222 Aryan 25

111Karan 111Karan

JAVA PROGRAMMING Page 22

Java -Methods
A Java method is a collection of statements that are grouped together to perform an operation. When you

call the System.out.println() method, for example, the system actually executes several statements in order

to display a message on the console.

Now you will learn how to create your own methods with or without return values, invoke a method with or

without parameters, and apply method abstraction in the program design.

Creating Method

Considering the following example to explain the syntax of a method −

Syntax

Here,

 public static −modifier

 int − returntype

 methodName − name of the method

 a, b − formalparameters

 int a, int b − list ofparameters

Method definition consists of a method header and a method body. The same is shown in the following syntax −

Syntax

The syntax shown above includes −

 modifier− It defines the access type of the method and it is optional touse.

 returnType− Method may return avalue.

 nameOfMethod− This is the method name. The method signature consists of themethod

name and the parameter list.

 Parameter List − The list of parameters, it is the type, order, and number of parameters

of a method. These are optional, method may contain zeroparameters.

 method body − The method body defines what the method does with thestatements.

public static int methodName(int a, int b) {

// body

}

modifier returnType nameOfMethod (Parameter List) {

// method body

}

JAVA PROGRAMMING Page 23

Static Fields and Methods

The static keyword in java is used for memory management mainly. We can apply java static keyword with

variables, methods, blocks and nested class. The static keyword belongs to the class than instance of the class.

The static can be:

1. variable (also known as classvariable)

2. method (also known as classmethod)

3. block

4. nestedclass

Java static variable

If you declare any variable as static, it is known static variable.

o The static variable can be used to refer the common property of all objects (that is not unique for

each object) e.g. company name of employees,college name of studentsetc.

o The static variable gets memory only once in class area at the time of classloading.

Advantage of static variable

It makes your program memory efficient (i.e it saves memory).

Understanding problem without static variable

1. classStudent{

2. introllno;

3. Stringname;

4. String college="ITS";

5.}

Example of static variable

//Program of static variable

classStudent8{

introllno;

JAVA PROGRAMMING Page 24

String name;

staticString college ="ITS";

Student8(int r,String n){

rollno =r;

name =n;

}voiddisplay (){System.out.println(rollno+" "+name+" "+college);}

public static void main(String args[]){

Student8 s1 = new Student8(111,"Karan");

Student8 s2 = new Student8(222,"Aryan");

s1.display();

s2.display();

} }

Output:111 KaranITS

222 AryanITS

Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than object of aclass.

o A static method can be invoked without the need for creating an instance of aclass.

o static method can access static data member and can change the value ofit.

Example of static method

//Program of changing the common property of all objects(static field).

classStudent9{

int rollno;

String name;

staticString college = "ITS";

static void change(){

college = "BBDIT";

}

Student9(int r, String n){ rollno =r;

name =n;

JAVA PROGRAMMING Page 25

}

voiddisplay (){System.out.println(rollno+" "+name+" "+college);}

public static void main(String args[]){

Student9.change();

Student9 s1 = new Student9 (111,"Karan");

Student9 s2 = new Student9 (222,"Aryan");

Student9 s3 = new Student9 (333,"Sonoo");

 s1.display();

s2.display();

s3.display();

} }

Java static block

o Is used to initialize the static datamember.

o It is executed before main method at the time of classloading.

Example of static block

class A2{

static{

System.out.println("static block is invoked");

}

 public static void main(String args[]){

System.out.println("Hello main");

} }

Access Control

Access Modifiers in java

There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifiers in java specifies accessibility (scope) of a data member, method, constructor or class.

There are 4 types of java access modifiers:

Output:111 Karan BBDIT 222 Aryan BBDIT

333 Sonoo BBDIT

Output: static block is invoked Hello main

JAVA PROGRAMMING Page 26

1. private

2. default

3. protected

4. public

private access modifier

The private access modifier is accessible only within class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and

private method. We are accessing these private members from outside the class, so there is compile time

error.

classA{

private int data=40;

private void msg(){System.out.println("Hello java");}}

public class Simple{

public static void main(String args[]){ A obj=new A();

System.out.println(obj.data);//Compile Time Error obj.msg();//Compile Time Error

} }

2) default accessmodifier

If you don't use any modifier, it is treated as default bydefault. The default modifier is accessible only

withinpackage.

Example of default accessmodifier

In this example, we have created two packages pack and mypack. We are accessing the A class from

outside its package, since A class is not public, so it cannot be accessed from outside thepackage.

//save by A.java

package pack;

class A{

voidmsg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

JAVA PROGRAMMING Page 27

classB{

public static void main(String args[]){

A obj = new A();//Compile Time Error

obj.msg();//Compile Time Error }}

In the above example, the scope of class A and its method msg() is default so it cannot be accessed from

outside thepackage.

3) protected accessmodifier

The protected access modifier is accessible within package and outside the package but through

inheritance only.

The protected access modifier can be applied on the data member, method and constructor. It can't be

applied on the class.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack package is

public, so can be accessed from outside the package. But msg method of this package is declared as

protected, so it can be accessed from outside the class only throughinheritance.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");} }

//save by B.java

package mypack;

import pack.*;

class B extends A{

public static void main(String args[]){

B obj = new B();

obj.msg();

} }

Output:Hello

4) public accessmodifier

The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

JAVA PROGRAMMING Page 28

Example of public access modifier

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

} }

Output:Hello

Understanding all java access modifiers

Let's understand the access modifiers by a simple table.

Access

Modifier

within

class

within

package

outsidepackageby

subclassonly

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

this keyword in java

Usage of java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instancevariable.

2. this can be used to invoke current class method(implicitly)

3. this() can be used to invoke current classconstructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructorcall.

6. this can be used to return the current class instance from themethod.

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee){

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=newStudent(112,"sumit",6000f);

s1.display();

s2.display();

}}

Output:

111 ankit 5000

112 sumit 6000

Difference between constructor and method in java

There are many differences between constructors and methods. They are given below:

Java Constructor Java Method

Constructor is used to initialize the state of an

object.

Method is used to expose behaviour of

anobject.

Constructor must not have return type. Method must have return type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default

constructor if you don't have any constructor.

Method is not provided by compiler in any case.

Constructor name must be same as the class

name.

Method name may or may not be

JAVA PROGRAMMING

Page 30

same as class name.

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any number of

constructors that differ in parameter lists.The compiler differentiates these constructors by

taking into account the number of parameters in the list and their type.

Example of Constructor Overloading

class Student5{

int id; String

name;

intage;

Student5(int i,String n){

id = i;

name = n;

}

Student5(int i,String n,int a){

id = i;

name = n;

age=a;

}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = newStudent5(222,"Aryan",25);

s1.display();

s2.display();

}

}

Output:

JAVAPROGRAMMING Page31

JAVA PROGRAMMING Page 32

Method Overloading in java

If a class has multiple methods having same name but different in parameters, it is known as

MethodOverloading.

If we have to perform only one operation, having same name of the methods increases the readability of the

program.

Method Overloading: changing no. of arguments

In this example, we have created two methods, first add() method performs addition of two numbers and

second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create instance for calling methods.

classAdder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

classTestOverloading1{

public static void main(String[] args){ System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11));

}}

Output:

Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The first add method receives two

integer arguments and second add method receives two double arguments.

111 Karan 0

222 Aryan 25

22

33

JAVA PROGRAMMING Page 33

Recursion in Java
Recursion in java is a process in which a method calls itself continuously. A method in java that calls itself is called

recursive method.

Java Recursion Example 1: Factorial Number

public class RecursionExample3 {

static int factorial(int n){

if(n == 1)

return 1;

else

return(n * factorial(n-1));

} }

public static void main(String[] args) {

System.out.println("Factorial of 5 is: "+factorial(5));

} }

Output:

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it is

a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is performed

automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced

objects from heapmemory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make

extraefforts.

gc() method

Factorial of 5 is: 120

JAVA PROGRAMMING Page 34

The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc() is found in

System and Runtime classes.

public static void gc(){}

Simple Example of garbage collection in java

 public class TestGarbage1{

public void finalize(){

System.out.println("object is garbage collected");

}

public static void main(String args[]){

TestGarbage1 s1=new TestGarbage1();

TestGarbage1 s2=new TestGarbage1();

 s1=null;

s2=null; System.gc();

} }

Java String
string is basically an object that represents sequence of char values. An array of characters works same as

java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch); ssame as:

1. Strings="javatpoint";

2. Java String class provides a lot of methods to perform operations on string such as compare(),
concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

3. The java.lang.String class implements Serializable, Comparable and
CharSequenceinterfaces.

CharSequence Interface

object is garbage collected object is garbage collected

JAVA PROGRAMMING Page 35

The CharSequence interface is used to represent sequence of characters. It is implemented by String,

StringBuffer and StringBuilder classes. It means, we can create string in java by using these 3 classes.

The java String is immutable i.e. it cannot be changed. Whenever we change any string, a new instance is

created. For mutable string, you can use StringBuffer and StringBuilder classes.

There are two ways to create String object:

1. By stringliteral

2. By newkeyword

String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the string constant pool first. If the string already

exists in the pool, a reference to the pooled instance is returned. If string doesn't exist in the pool, a new

string instance is created and placed in the pool. For example:

1. Strings1="Welcome";

2. String s2="Welcome";//will not create newinstance

By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non pool) heap memory and the literal

"Welcome" will be placed in the string constant pool. The variable s will refer to the object in heap (non

pool).

Java String Example

public class StringExample{

public static void main(String args[]){

String s1="java";//creating string by java string literal

charch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword System.out.println(s1);

System.out.println(s2); System.out.println(s3);

}}

 OUTPUT:

JAVA PROGRAMMING Page 36

Immutable String in Java

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable. Once

string object is created its data or state can't be changed but a new string object is created. Let's try to

understand the immutability concept by the example given below:

classTestimmutablestring{
public static void main(String args[]){ String s="Sachin";

s.concat(" Tendulkar");//concat() method appends the string at the end System.out.println(s);//will print

Sachin because strings are immutable objects

}}

Output:Sachin

classTestimmutablestring1{

public static void main(String args[]){ String s="Sachin";

s=s.concat(" Tendulkar"); System.out.println(s);

} }Output:Sachin Tendulkar

java strings example

JAVA PROGRAMMING Page 37

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

Unit-2

Inheritance in Java

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors

of parent object. Inheritance represents the IS-A relationship, also known as parent-

childrelationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can beachieved).

o For CodeReusability.

Syntax of Java Inheritance

1. classSubclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from an existing class.

The meaning of "extends" is to increase the functionality.

classEmployee{
float salary=40000;

}

classProgrammer extends Employee{

int bonus=10000;

public static void main(String args[]){

 Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

} }

Programmer salary is:40000.0

JAVA PROGRAMMING Page 38

Bonus of programmeris:10000

Types of inheritance in java

Single Inheritance Example

File: TestInheritance.java

classAnimal{ voideat(){System.out.println("eating...");}

}

classDog extends Animal{

voidbark(){System.out.println("barking...");}

}

classTestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}}

Output: barking... eating...

Multilevel Inheritance Example

File: TestInheritance2.java

classAnimal{

voideat(){

System.out.println("eating...");

}

}

classDog extends Animal{
voidbark(){

System.out.println("barking...");

}

}

classBabyDog extends Dog{
voidweep(){

System.out.println("weeping...");

}

}

classTestInheritance2{

JAVA PROGRAMMING Page 39

public static void main(String args[]){

BabyDog d=new BabyDog();
d.weep();

d.bark();

d.eat();
}}

Output:

Hierarchical Inheritance Example

File: TestInheritance3.java

classAnimal{

 voideat(){

System.out.println("eating...");

}

}

classDog extends Animal{
voidbark(){

System.out.println("barking...");

}

}

classCat extends Animal{
voidmeow(){

System.out.println("meowing...");

}

}

classTestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}}

Output:

weeping... barking... eating...

meowing... eating...

JAVA PROGRAMMING Page 40

super keyword in java

The super keyword in java is a reference variable which is used to refer immediate parent class object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly which is

referred by super reference variable.

Usage of java super Keyword

1. super can be used to refer immediate parent class instancevariable.

2. super can be used to invoke immediate parent classmethod.

3. super() can be used to invoke immediate parent classconstructor.

super is used to refer immediate parent class instance variable.

classAnimal{ Stringcolor="white";

}

classDog extends Animal{ Stringcolor="black";

voidprintColor(){ System.out.println(color);//prints color of Dogclass

System.out.println(super.color);//prints color of Animal class

}

}

classTestSuper1{

public static void main(String args[]){ Dog d=new Dog();

Member access and Inheritance

A subclass includes all of the members of its super class but it cannot access those members of the super

class that have been declared as private. Attempt to access a private variable would cause compilation

error as it causes access violation. The variables declared as private, is only accessible by other

members of its own class. Subclass have no access to it.

JAVA PROGRAMMING Page 41

d.printColor();

}}

Output:

Final Keyword in Java

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

1. variable

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it is called blank

final variable or uninitialized final variable. It can be initialized in the constructor only. The blank final

variable can be static also which will be initialized in the static block only.

Object class in Java

The Object class is the parent class of all the classes in java by default. In other words, it is the topmost

class of java.

The Object class is beneficial if you want to refer any object whose type you don't know. Notice that parent

class reference variable can refer the child class object, know as upcasting.

Let's take an example, there is getObject() method that returns an object but it can be of any type like

Employee,Student etc, we can use Object class reference to refer that object. For example:

1. Object obj=getObject();//we don't know what object will be returned from thismethod

The Object class provides some common behaviors to all the objects such as object can be compared, object

can be cloned, object can be notified etc.

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class, it is known as method

overriding in java.

black

white

JAVA PROGRAMMING Page 42

Usage of Java Method Overriding

o Method overriding is used to provide specific implementation of a method that is already
provided by its superclass.

o Method overriding is used for runtimepolymorphism

Rules for Java Method Overriding

1. method must have same name as in the parentclass

2. method must have same parameter as in the parentclass.

3. must be IS-A relationship(inheritance).

Example of method overriding

Class Vehicle{
voidrun(){System.out.println("Vehicle is running");}

}

classBike2 extends Vehicle{

voidrun(){System.out.println("Bike is running safely");}

public static void main(String args[]){

Bike2 obj = new Bike2(); obj.run();

}

Output:Bike is running safely

1. classBank{

intgetRateOfInterest(){return 0;}

}

classSBI extends Bank{

intgetRateOfInterest(){return 8;}
}

classICICI extends Bank{

intgetRateOfInterest(){return 7;}
}

classAXIS extends Bank{

intgetRateOfInterest(){return 9;}
}

classTest2{

public static void main(String args[]){
SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());

} }

Output:

SBI Rate of Interest: 8

JAVA PROGRAMMING Page 43

Abstract class in Java

A class that is declared with abstract keyword is known as abstract class in java. It can have abstract and non-

abstract methods (method with body). It needs to be extended and its method implemented. It cannot be

instantiated.

Example abstract class

1. abstract classA{}

abstractmethod

1. abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

abstract class Bike{

abstract void run();

}

classHonda4 extends Bike{

voidrun(){System.out.println("running safely..");}

public static void main(String args[]){

Bike obj = new Honda4(); obj.run();

}

1. }

Interface in Java
An interface in java is a blueprint of a class. It has static constants and abstract methods.

The interface in java is a mechanism to achieve abstraction. There can be only abstract methods in the

java interface not method body. It is used to achieve abstraction and multiple inheritance in Java.

Java Interface also represents IS-A relationship. It cannot be instantiated just like abstract class.

There are mainly three reasons to use interface. They are given below.

o It is used to achieveabstraction.

o By interface, we can support the functionality of multipleinheritance.

o It can be used to achieve loosecoupling.

ICICI Rate of Interest: 7 AXIS Rate of Interest: 9

runningsafely..

JAVA PROGRAMMING Page 44

Internal addition by compiler

Understanding relationship between classes and interfaces

//Interface declaration: by first user

interfaceDrawable{

voiddraw();

}

//Implementation: by second user

classRectangle implements Drawable{
public void draw(){System.out.println("drawing rectangle");}

}

classCircle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

//Using interface: by third user

classTestInterface1{

public static void main(String args[]){
Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable() d.draw();

}}

Output:drawing circle

Multiple inheritance in Java by interface

interfacePrintable{

JAVA PROGRAMMING Page 45

voidprint();

}

interfaceShowable{

voidshow();

}

classA7 implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

A7 obj = new A7(); obj.print();

obj.show();

} }

Output:Hello

Welcome

Abstract class

Interface

1) Abstract class can have abstract Interface can have only abstract methods. Since

and non-abstractmethods. Java 8, it can have default and static

 methodsalso.

2) Abstract class doesn't support Interface supports multiple inheritance.

multipleinheritance.

3) Abstract class can have final, non- Interface has only static and final variables.

final, static and non-static variables.

4) Abstract class can provide the Interface can't provide the implementation of

implementation ofinterface. abstract class.

5) The abstract keyword is used to Theinterface keyword is used to declare

declare abstract class. interface.

6) Example: Example:

public abstract class Shape{ public interface Drawable{

public abstract void draw(); void draw();

} }

Java Inner Classes
Java inner class or nested class is a class which is declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more readable and

maintainable.

Syntax of Inner class

1. classJava_Outer_class{

2. //code

3. classJava_Inner_class{

4. //code

5. } }

JAVA PROGRAMMING Page 46

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the members

(data members and methods) of outer class includingprivate.

2) Nested classes are used to develop more readable and maintainable code because it

logically group classes and interfaces in one placeonly.

3) Code Optimization: It requires less code to write.

Difference between nested class and inner class in Java

Inner class is a part of nested class. Non-static nested classes are known as inner classes.

Types of Nested classes

There are two types of nested classes non-static and static nested classes.The non-static nested classes are also

known as inner classes.

o Non-static nested class (innerclass)

1. Member inner class

2. Anonymous innerclass

3. Local inner class

o Static nestedclass

Java Package
A java package is a group of similar types of classes, interfaces and sub-packages. Package in java can be

categorized in two form, built-in package and user-defined package. There are many built-in packages such

as java, lang, awt, javax, swing, net, io, util, sql etc.Advantage of JavaPackage

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides accessprotection.

3) Java package removes namingcollision.

packagemypack;

public class Simple{

public static void main(String args[]){

System.out.println("Welcome to package");

} }

JAVA PROGRAMMING Page 47

How to compile java package

If you are not using any IDE, you need to follow the syntax given below: javac -d directory

javafilename

How to run java package program

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Using fully qualified name

Example of package by import fully qualified name

//save by A.java package pack; public class A{

public void msg(){System.out.println("Hello");} }
//save by B.java package mypack; class B{

public static void main(String args[]){

pack.A obj = new pack.A();//using fully qualified name obj.msg();

}

}

Output:Hello

JAVA PROGRAMMING Page 48

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

UNIT-3

Exception Handling

The exception handling in java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can bemaintained.

What is exception

In java, exception is an event that disrupts the normal flow of the program. It is an object which is thrown at

runtime.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.

Exception normally disrupts the normal flow of the application that is why we use exception handling.

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered as unchecked

exception. The sun microsystem says there are three types of exceptions:

1. CheckedException

2. UncheckedException

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception: The classes that extend Throwable class except RuntimeException and

Error are known as checked exceptions e.g.IOException, SQLException etc. Checked exceptions are

checked atcompile-time.

2) Unchecked Exception: The classes that extend RuntimeException are known as unchecked

exceptions e.g. ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Unchecked exceptions are not checked at compile-time rather they are checkedatruntime.

3) Error: Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionErroretc.

JAVA PROGRAMMING Page 49

Hierarchy of Java Exception classes

Checked and UnChecked Exceptions

JAVA PROGRAMMING Page 50

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used within the

method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

1. try{

2. //code that may throwexception

3. }catch(Exception_class_Name ref){}Syntax of try-finallyblock

1. try{

2. //code that may throwexception

3. }finally{}

Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only. You can use

multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{

public static void main(String args[]){ int data=50/0;//may throw exception System.out.println("rest of

thecode...");

} }

Output:

Exception in thread main java.lang.ArithmeticException:/ byzero

As displayed in the above example, rest of the code is not executed (in such case, rest of the code...

statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

public class Testtrycatch2{

JAVA PROGRAMMING Page 51

public static void main(String args[]){

try{

intdata=50/0;

}catch(ArithmeticException e){System.out.println(e);} System.out.println("rest of the code...");

} }

1. Output:

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code... statement is

printed.

Java Multi catch block

If you have to perform different tasks at the occurrence of different Exceptions, use java multi catch block.

Let's see a simple example of java multi-catch block.

public classTestMultipleCatchBlock{

public static void main(Stringargs[]){

try{

inta[]=new int[5];

a[5]=30/0;

}

catch(ArithmeticException e){System.out.println("task1 iscompleted");}

catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed"); }

catch(Exception e){System.out.println("common taskcompleted");

 }

 System.out.println("rest of the code..."); 13. } }

Java nested try example

Let's see a simple example of java nested try block.

class Excep6{

public static void main(String args[]){

try{t ry{

System.out.println("going to divide");

intb =39/0;

}catch(ArithmeticException e){System.out.println(e);}

Exception in thread main java.lang.ArithmeticException:/ by zero rest of the code...

Output:task1 completed rest of the code...

JAVA PROGRAMMING Page 52

try{

int a[]=new

int[5];

a[5]=4;

}catch(ArrayIndexOutOfBoundsException e){

System.out.println(e);

}

 System.out.println("other statement);

}catch(Exception e){

System.out.println("handeled");

}

System.out.println("normal flow..");

} }

Java finally block

Java finally block is a block that is used to execute important code such as closing connection,

stream etc.

Java finally block is always executed whether exception is handled or not. Java finally block follows try or

catch block.

Usage of Java finally

Case 1

Let's see the java finally example where exception doesn't occur. class TestFinallyBlock{

public static void main(String args[]){

try{ intdata=25/5;

System.out.println(data);

}

catch(NullPointerException e){System.out.println(e);} finally{System.out.println("finally block is always

executed");} System.out.println("rest of the code...");

}

}

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw keyword is

mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

1. throwexception;

Output:5

finally block is always executed rest of the code...

JAVA PROGRAMMING Page 53

Java throw keyword example

In this example, we have created the validate method that takes integer value as a parameter. If the age is

less than 18, we are throwing the ArithmeticException otherwise print a message welcome to vote.

 public class TestThrow1{

static void validate(int age){

if(age<18)

throw new ArithmeticException("not valid");

else

System.out.println("welcome to vote");

}

public static void main(String args[]){ validate(13);

System.out.println("rest of the code...");

}}

Output:

Exception in thread main java.lang.ArithmeticException:notvalid

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to the programmer that

there may occur an exception so it is better for the programmer to provide the exception handling code so

that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any unchecked

exception such as NullPointerException, it is programmers fault that he is not performing check up before

the code being used.

Syntax of java throws

1. return_type method_name() throwsexception_class_name{

2. //method code3. }

4.

Java throws example

Let's see the example of java throws clause which describes that checked exceptions can be propagated by

throws keyword.

import java.io.IOException;

class Testthrows1{

void m() throwsIOException{

throw new IOException("device error");//checked exception

JAVA PROGRAMMING Page 54

}

Void n() throws

IOException{ m();

}

voidp(){

try{

n();

}catch(Exception e){System.out.println("exception handled");}

}

public static void main(String args[]){

Testthrows1 obj=new Testthrows1();

obj.p();

System.out.println("normal flow..."); } } Output:

Java Custom Exception

If you are creating your own Exception that is known as custom exception or user-defined exception. Java

custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message. Let's see a simple example

of java custom exception.

class InvalidAgeException extends Exception{InvalidAgeException(String s){ super(s);

} }

class TestCustomException1{

static void validate(int age)throws InvalidAgeException{

if(age<18)

throw new InvalidAgeException("not valid");

else

System.out.println("welcome to vote");

}

public static void main(String args[]){

try{ validate(13);

}catch(Exception m){System.out.println("Exception occured: "+m);}

System.out.println("rest of the code...");

}}

Output:Exception occured: InvalidAgeException:not valid rest of the code...

exception handled normal flow...

JAVA PROGRAMMING Page 55

Multithreading

Multithreading in java is a process of executing multiple threads simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area. They don't

allocate separate memory area so saves memory, and context-switching between the threads takes less time

than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can performmultiple

operations at sametime.

2) You can perform many operations together so it savestime.

3) Threads are independent so it doesn't affect other threads if exception occur in a singlethread.

Life cycle of a Thread (Thread States)

A thread can be in one of the five states. According to sun, there is only 4 states in thread life cycle in java

new, runnable, non-runnable and terminated. There is no running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable(Blocked)

5. Terminated

JAVA PROGRAMMING Page 56

How to create thread

There are two ways to create a thread:

1. By extending Threadclass

2. By implementing Runnableinterface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a thread.

Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

oThread() oThread(String name) oThread(Runnable r)

oThread(Runnable r,String name)

JAVA PROGRAMMING Page 57

Commonly used methods of Thread class:

1. public void run(): is used to perform action for athread.

2. public void start(): starts the execution of the thread.JVM calls the run() method onthethread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number ofmilliseconds.

4. public void join(): waits for a thread todie.

5. public void join(long miliseconds): waits for a thread to die for the specifiedmiliseconds.

6. public int getPriority(): returns the priority of thethread.

7. public int setPriority(int priority): changes the priority of thethread.

8. public String getName(): returns the name of thethread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executingthread.

11. public int getId(): returns the id of thethread.

12. public Thread.State getState(): returns the state of thethread.

13. public boolean isAlive(): tests if the thread isalive.

14. public void yield(): causes the currently executing thread object to temporarily pause and allow
other threads toexecute.

15. public void suspend(): is used to suspend thethread(depricated).

16. public void resume(): is used to resume the suspendedthread(depricated).

17. public void stop(): is used to stop thethread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemonthread.

19. public void setDaemon(boolean b): marks the thread as daemon or userthread.

20. public void interrupt(): interrupts thethread.

21. public boolean isInterrupted(): tests if the thread has beeninterrupted.

22. public static boolean interrupted(): tests if the current thread has beeninterrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be executed by a

thread. Runnable interface have only one method named run().

1. public void run(): is used to perform action for athread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following tasks:

oA new thread starts(with new callstack).

oThe thread moves from New state to the Runnable state.

oWhen the thread gets a chance to execute, its target run() method will run.

JAVA PROGRAMMING Page 58

Java Thread Example by extending Thread class

class Multi extends Thread{

public void run(){ System.out.println("thread is running...");

}

public static void main(String args[]){

Multi t1=new Multi();

t1.start();

} }

Java Thread Example by implementing Runnable interface

class Multi3 implements Runnable{

public void run(){

 System.out.println("thread is running...");

}

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1); t1.start();

} }

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In most cases, thread

schedular schedules the threads according to their priority (known as preemptive scheduling). But it is not

guaranteed because it depends on JVM specification that which scheduling it chooses.

3 constants defined in Thread class:

1. public static intMIN_PRIORITY

2. public static intNORM_PRIORITY

3. public static intMAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the value of

MAX_PRIORITY is 10.

Example of priority of a Thread:
class TestMultiPriority1 extends
Thread{public void run(){

System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

}

public static void main(String args[]){

Output:thread isrunning...

Output:thread isrunning...

TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

m2.start();

} }

Output:running thread name is:Thread-0 running thread priority is:10

running thread name is:Thread-1 running thread priority is:1

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method. Synchronized method is used to

lock an object for any shared resource.

When a thread invokes a synchronized method, it automatically acquires the lock for that object and releases it

when the thread completes its task.

JAVA PROGRAMMING Page 61

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF ECE

UNIT 4

APPLETS:
An applet is a program that comes from server into a client and gets executed at client side anddisplays the

result.

An applet represents byte code embedded in a html page. (Applet = bytecode + html) and runwith the help

of Java enabled browsers such as Internet Explorer.

An applet is a Java program that runs in a browser. Unlike Java applications applets do not havea main ()

method.

To create applet we can use java.applet.Applet or javax.swing.JApplet class. All applets inherit the super

class ‘Applet’. An Applet class contains several methods that help to control the execution of an applet.

Advantages:

1. Applets provide dynamic nature for a webpage.

2. Applets are used in developing games and animations.

3. Writing and displaying (browser) graphics and animations is easier thanapplications.

4. In GUI development, constructor, size of frame, window closing code etc. are notrequired

Restrictions of Applets of Applets Vs Applications

 Applets are required separate compilation before opening in a browser.

 In realtime environment, the bytecode of applet is to be downloaded from the server to theclient

machine.

 Applets are treated as untrusted (as they were developed by unknown people and placed

onunknown servers whose trustworthiness is not guaranteed).

 Extra Code is required to communicate between applets using AppletContext.

 DIFFERENCES BETWEEN APPLETS AND APPLICATIONS

FEATURE APPLICATION APPLET

main() method main() method Present main() method Not present

Execution Can be executed on standalone
computer system. (JDK & JRE)

Used to run a program on client
Browser like Chrome.

Nature Called as stand-alone

application as application can

be executed from command
prompt

Requires some third party tool

help like a browser to execute

Restrictions Can access any data or software

available on the system
Cannot access anything on the

system except browser‟s

services

Security Does not require any security Requires highest security for the
system as they are untrusted

Programming larger programs small programs

Platform platform independent platform independent

Accessibility The java applications are
designed to work with the

Applets are designed just for
handling the client site

JAVA PROGRAMMING Page 62

 client as well as server. problems.

Working Applications are created by

writing public static void

main(String[] s) method

Applets are created by

extending the java.applet.Applet

class

Client side /

Server side

The applications don't
have such type of criteria

Applets are designed for the
client site programming purpose

Methods Application has a single start

point which is main method
Applet application has 5

methods which will be
automatically invoked.

Example public class MyClass

{ public static void main(String

args[]){}

}

import java.awt.*;

import java.applet.*;

public class Myclass extends

Applet{

public void init(){}

public void start(){}

public void stop(){}

public void destroy() {}

public void paint(Graphics g) {}

}

LIFE CYCLE OF AN APPLET
Let the Applet class extends Applet or JApplet class.

Initialization:

public void init(): This method is used for initializing variables, parameters to create components. This
method is executed only once at the time of applet loaded into memory.

public void init(){

//initialization

}

Runnning:

public void start (): After init() method is executed, the start method is executed automatically. Start

method is executed as long as applet gains focus. In this method code related to opening files and

connecting to database and retrieving the data and processingthe data is written.

JAVA PROGRAMMING Page 63

Idle / Runnable:

public void stop (): This method is executed when the applet loses focus. Code related to closing the files

and database, stopping threads and performing clean up operations are written in this stop method.

Dead/Destroyed:
public void destroy (): This method is executed only once when the applet is terminated from the memory.

Executing above methods in that sequence is called applet life cycle. We can also use public void paint

(Graphics g) in applets.

//An Applet skeleton.

 import java.awt.*;

import java.applet.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends Applet {

public void init() {

 //initialization

}

/* Called second, after init(). Also called whenever the applet is restarted. */

public void start() {

//start or resume execution

}

/* Called when the applet is stopped. */

public void stop() {

//suspends execution

}

/* Called when applet is terminated. This is the last method executed. */

 public void destroy() {

//perform shutdown activities

}

//Called when an applet's window must be restored.

public void paint(Graphics g) {

//redisplay contents of window

}

}

After writing an applet, an applet is compiled in the same way as Java application but running of an applet is

different.

There are two ways to run an applet.

 Executing an applet within a Java compatible web browser.

Executing an applet using ‘appletviewer’. This executes the applet in a window.

To execute an applet using web browser, we must write a small HTML file which contains the appropriate

„APPLET‟ tag. <APPLET> tag is useful to embed an applet into an HTML page. It has the following form:

JAVA PROGRAMMING Page 64

<APPLET CODE=”name of the applet class file” HEIGHT = maximum height of applet in

pixels WIDTH = maximum width of applet in pixels ALIGN = alignment (LEFT, RIGHT,
MIDDLE, TOP, BOTTOM)>

<PARAM NAME = parameter name VALUE = its
value> </APPLET>

Execution: appletviewer programname.java or appletviewer programname.html

The <PARAM> tag useful to define a variable (parameter) and its value inside the HTML page which can be

passed to the applet. The applet can access the parameter value using getParameter () method, as: String

value = getParameter (“pname”);

Example Program:

Following is a simple applet named HelloWorldApplet.java –

 import java.applet.*;

import java.awt.*;

public class HelloWorldApplet extends Applet {

public void paint (Graphics g) {

g.drawString ("Hello World", 25, 50);

} }

Invoking an Applet - HelloWorldApplet.html

<html>

<title>The Hello, World Applet</title>

<applet code = "HelloWorldApplet.class" width = "320" height = "120">

</applet>

</html>

OUTPUT: javac HelloWorldApplet. java appletviewer HelloWorldApplet.html

//First.java

import java.applet.Applet;

import java.awt.Graphics;
/*

<applet code="First.class" width="300" height="300">

</applet>

*/

public class First extends Applet

{

public void paint(Graphics g){ g.drawString("welcome to applet",150,150);

}

}

OUTPUT: javac First.java

appletviewer First.java

TYPES OF APPLETS

Applets are of two types:

// Local Applets

// Remote Applets

Local Applets: An applet developed locally and stored in a local system is called local applets.

So, local system does not require internet. We can write our own applets and embed them into
the web pages.

Remote Applets: The applet that is downloaded from a remote computer system and embed

applet into a web page. The internet should be present in the system to download the applet and

run it. To download the applet we must know the applet address on web known as Uniform

Resource Locator(URL) and must be specified in the applets HTML document as the value of
CODEBASE.

PASSING PARAMETERS TO AN APPLE

Java applet has the feature of retrieving the pa rameter values passed from the html page. So,

you to the applet embedded in your page. The param can pass the parameters from your html

page.

tag(<parma name="" value=""></param>) is used to pass the parameters to an applet. The applet

has to call the getParameter() method supplied by the java.applet.Applet parent class.

Ex1: Write a program to pass employ name and id number to an applet.

import java.applet.*;

import java.awt.*;

/* <applet code="MyApplet2.class" width = 600 height= 450>
<param name = "t1" value="Hari Prasad"> <param name =
"t2" value ="101">

</applet> */

public class MyApplet2 extends Applet

{

String n;
String id;

public void init()

{

n = getParameter("t1");
id = getParameter("t2");

}

public void paint(Graphics g)

{

rawString("Name is : "

+ n, 100,100);
g.drawString("Id is :
"+ id, 100,150);

}

}

Ex2: Write a program to pass two numbers and pass result to an applet.

import java.awt.*;

import java.applet.*;
/*<APPLET code="Pp" width="300"

height="250"> <PARAM name="a" value="5">

<PARAM name="b" value="5">

</APPLET>*/

public class Pp extends Applet

{

JAVA PROGRAMMING

Page 65

String str;

int a,b,result;

public void init()

{

str=getParameter("a");

a=Integer.parseInt(str);

str=getParameter("b");

b=Integer.parseInt(str);

result=a+b;

str=String.valueOf(result);
}

public void paint(Graphics g)

{

g.drawString(" Result of Addition is : "+str,0,15);

}

}

Ex3: Hai.java

import java.applet.*;

import java.awt.*;

/*<Applet code="hai" height="250" width="250">

<PARAM name="Message" value="Hai friend how are you ..?"></APPLET>

*/

class hai extends Applet

{

private String defaultMessage = "Hello!";

public void paint(Graphics g) {

String inputFromPage = this.getParameter("Message"); if

(inputFromPage == null) inputFromPage = defaultMessage;

g.drawString(inputFromPage, 50, 55);

}

}

Output:

JAVA PROGRAMMING

Page 66

JAVA PROGRAMMING Page 67

EVENT HANDLING
Event handling is at the core of successful applet programming. Most events to which the applet will respond

are generated by the user. The most commonly handled events are those generated by the mouse, the keyboard,

and various controls, such as a push button.

Events are supported by the java.awt.event package.

The Delegation Event Model

The modern approach to handling events is based on the delegation event model, which defines standard

and consistent mechanisms to generate and process events.

Its concept is quite simple: a source generates an event and sends it to one or more listeners. In this scheme, the

listener simply waits until it receives an event. Once received, the listener processes the event and then returns.

The advantage of this design is that the application logic that processes events is cleanly separated from the user

interface logic that generates those events. A user interface element is able to "delegate" the processing of an

event to a separate piece of code.

In the delegation event model, listeners must register with a source in order to receive an event notification. This

provides an important benefit: notifications are sent only to listeners that want to receive them.

EVENTS
In the delegation model, an event is an object that describes a state change in a source. It can be generated as a

consequence of a person interacting with the elements in a graphical user interface. Some of the activities that

cause events to be generated are pressing a button, entering a character via the keyboard, selecting an item in a

list, and clicking the mouse.

Events may also occur that are not directly caused by interactions with a user interface.

For example, an event may be generated when a timer expires, a counter exceeds a value, software or hardware

failure occurs, or an operation is completed.

EVENT SOURCES
A source is an object that generates an event. This occurs when the internal state of that object changes in some

way. Sources may generate more than one type of event. A source must register listeners in order for the

listeners to receive notifications about a specific type of event. Each type of event has its own registration

method.

Here is the general form:

public void add Type Listener(Type Listener el)

EVENT LISTENERS
A listener is an object that is notified when an event occurs. It has two major requirements. First, it must have

been registered with one or more sources to receive notifications about specific types of events. Second, it must

implement methods to receive and process these notifications. The methods that receive and process events are

defined in a set of interfaces found in java.awt.event.

JAVA PROGRAMMING Page 68

For example, the MouseMotionListener interface defines two methods to receive notifications when the mouse

is dragged or moved.

EVENT CLASSES
The classes that represent events are at the core of Java's event handling mechanism. At the root of the Java

event class hierarchy is EventObject, which is in java.util. It is the superclass for all events.

It’s one constructor is shown here:

EventObject(Object src)

EventObject contains two methods: getSource() and toString() .

The getSource() method returns the source of the event. Ex: Object getSource()

toString() returns the string equivalent of the event.

The package java.awt.event defines several types of events that are generated by various user interface elements.

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu
item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract super class for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; so occurs when a choice
selection is made or a checkable menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved. (Added by Java 2, version 1.4)

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

The ActionEvent Class
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu item is selected.

The ActionEvent class defines four integer constants that can be used to identify any modifiers associated with

an action event: ALT_MASK , CTRL_MASK , META_MASK , and SHIFT_MASK .

ActionEvent has these three constructors: ActionEvent(Object src , int type , String cmd)

ActionEvent(Object src , int type , String cmd , int modifiers)

ActionEvent(Object src , int type, String cmd, long when , int modifiers)

JAVA PROGRAMMING Page 69

The ComponentEvent Class

// ComponentEvent is generated when the size, position, or visibility of a component is changed. There are four

types of component events. The constants and their meanings are shown here:

COMPONENT_HIDDEN The component was hidden. COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized. COMPONENT_SHOWN The component became

visible.

The ContainerEvent Class

//ContainerEvent is generated when a component is added to or removed from a container.

There are two types of container events.

COMPONENT_ADDED and

COMPONENT_REMOVED The KeyEvent Class

//KeyEvent is generated when keyboard input occurs. There are three types of key events, which are identified

by these integer constants: KEY_PRESSED, KEY_RELEASED, and KEY_TYPED .

The first two events are generated when any key is pressed or released. The last event occurs only when a

character is generated.

The MouseEvent Class
There are eight types of mouse events. The MouseEvent class defines the following integer
constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

The WindowEvent Class

There are ten types of window events. The WindowEvent class defines integer constants that can be used to

identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

 WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

JAVA PROGRAMMING Page 70

EVENT LISTENER INTERFACES

When an event occurs, the event source invokes the appropriate method defined by the listener and provides an

 event object as its argument

Interface Description

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden,
moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or
removed from a container.

FocusListener Defines two methods to recognize when a component gains or losses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released,
or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a
component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or
moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowListener Defines seven methods to recognize when a window is activated,
closed, deactivated, deiconified, iconified, opened, or quit.

The delegation event model has two parts: sources and listeners. Listeners are created by
implementing one or more of the interfaces defined by the java.awt.event package.

The ActionListener Interface
This interface defines the actionPerformed() method that is invoked when an action event occurs.

Its general form is shown here: void actionPerformed(ActionEvent ae)

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state of an item changes.

Its general form is shown here: void itemStateChanged(ItemEvent ie)

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods are invoked when a key

is pressed and released, respectively. The keyTyped() method is invoked when a character has been entered. For

example, if a user presses and releases the key, three events are generated in A sequence: key pressed, typed, and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

JAVA PROGRAMMING Page 71

The MouseListener Interface
This interface defines five methods. If the mouse is pressed and released at the same point, mouseClicked() is

invoked. When the mouse enters a component, the mouseEntered() method is called. When it leaves,

mouseExited() is called. The mousePressed() and mouseReleased() methods are invoked when the mouse is

pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods.

 The mouseDragged() method is called multiple times as the mouse is dragged.

The mouseMoved() method is called multiple times as the mouse is moved.

Their general forms are shown here:

void mouseDragged(MouseEvent me)

 void mouseMoved(MouseEvent me)

The TextListener Interface
This interface defines the textChanged() method that is invoked when a change occurs in a text area or text field.

Its general form is shown here: void textChanged(TextEvent te)

Handling Mouse Events
To handle mouse events, we must implement the MouseListener and the MouseMotion Listener interfaces.

EX: // Demonstrate the mouse event handlers.

 import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener

{

 String msg = "";

int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init() {

addMouseListener(this);

 addMouseMotionListener(this);

}

JAVA PROGRAMMING Page 72

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

mouseX = 0; // save coordinates

mouseY = 10;
msg = "Mouse clicked.";
repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {
// save

coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";
repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save

coordinate

s mouseX

= 0;

mouseY =

10;

msg = "Mouse exited.";
repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX =

me.getX();
mouseY =

me.getY(); msg =

"Down"; repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

1. save

coordinates
mouseX =

me.getX();

mouseY =

me.getY(); msg

= "Up";

repaint();

}

JAVA PROGRAMMING Page 73

 Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

//save coordinates

mouseX = me.getX();

mouseY = me.getY(); msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY); repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y location. public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

}

}

Handling Keyboard Events
When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the keyPressed() event

handler. When the key is released, a KEY_RELEASED event is generated and the keyReleased() handler is

executed. If a character is generated by the keystroke, then a KEY_TYPED event is sent and the keyTyped()

handler is invoked.

Thus, each time the user presses a key, at least two and often three events are generated. If all you care about

are actual characters, then you can ignore the information passed by the key press and release events.

EX: // Demonstrate the key event handlers.

 import java.awt.*;

import java.awt.event.*;

 import java.applet.*;

/* <applet code="SimpleKey" width=300 height=100> </applet> */

public class SimpleKey extends Applet implements KeyListener

{

String msg = "";

int X = 10, Y = 20; // output coordinates

 public void init() {

 addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke)

JAVA PROGRAMMING Page 74

{

 showStatus("Key Down");

 }

public void keyReleased(KeyEvent ke) { showStatus("Key Up");

public void keyTyped(KeyEvent ke) { msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g)

{

 g.drawString(msg, X, Y);

 }

}

JAVA PROGRAMMING Page 75

FILES AND STREAMS

Stream
A stream can be defined as a sequence of data. There are two kinds of Streams −

 InPutStream − The InputStream is used to read data from a source.

 OutPutStream − The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks.

Byte Streams
Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are, FileInputStream and
FileOutputStream.

Example

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException {

FileInputStream in = null;

FileOutputStream out = null;

 try {

in = new FileInputStream("input.txt");

out = new FileOutputStream("output.txt");

int c;

while ((c = in.read()) != -1) {

out.write(c);

}

}finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close();

}

}

} }

Now let's have a file input.txt with the following content:

This is test for copy file.

$javac CopyFile.java

$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas

Java Character streams are used to perform input and output for 16-bit unicode. Though

there are many classes related to character streams but the most frequently used classes

are, FileReader and FileWriter.

JAVA PROGRAMMING Page 76

Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but here the major

difference is that FileReader reads two bytes at a time and FileWriter writes two bytes at a time.

Example

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException {

FileReader in = null;

FileWriter out = null;

try {

in = new FileReader("input.txt");

out = new FileWriter("output.txt");

int c;

while ((c = in.read()) != -1) {

out.write(c);

}

}finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close();

}

}

}

}

Reading and Writing Files Text input/output,
As described earlier, a stream can be defined as a sequence of data. The InputStream is used to read data from

a source and the OutputStream is used for writing data to a destination. Here is a hierarchy of classes to deal

with Input and Output streams.

JAVA PROGRAMMING Page 77

The two important streams are FileInputStream and FileOutputStream (File Handling)

In Java, FileInputStream and FileOutputStream classes are used to read and write data in file. In another words,

they are used for file handling in java.

Java FileOutputStream class
Java FileOutputStream is an output stream for writing data to a file. It is a class belongs to byte streams.

It can be used to create text files.

First we should read data from the keyword. It uses DataInputStream class for reading data from the

keyboard is as:

DataInputStream dis=new DataInputStream(System.in);

FileOutputStream used to send data to the file and attaching the file to FileOutputStream. i.e.,

FileOutputStream fout=new FileOutputStream(“File_name”);

The next step is to read data from DataInputStream and write it into FileOutputStream. It means read data

from dis object and write it into fout object. i.e.,

ch=(char)dis.read(); //read one character into ch

fout.write(ch); //write ch into file.

Finally closing the file using: fout.close();

Creating a Text file:

Example: Write a program to read data from the keyboard and write it to myfile.txt file.

import java.io.*;

class Test{

public static void main(String args[])

{

DataInputStream dis=new DataInputStream(System.in);

FileOutputstream fout=new FileOutputStream("myfile.txt");

System.out.println("Enter text @ at the end:”);

char ch;

while((ch=(char)dis.read())!=‟@‟)

fout.write(ch); fout.close();

}

}

Output: javac Test.java
 Java Test

JAVA PROGRAMMING Page 78

Java FileInputStream class
It is useful to read data from a file in the form of sequence of bytes. It is possible to read data from a

text file using FileInputStream. i.e.,

FileInputStream fin= new FileInputStream(“myfile.txt”);
To read data from the file is,
ch=fin.read();

When there is no more data available to read then it returns -1.

The Output Stream is used to send data to the monitor. i.e., PrintStream, for displaying the data we can

use System.out.

System.out.print(ch);

Reading data from a text file using FileInputStream:
Java FileInputStream class obtains input bytes from a file. It is used for reading streams of raw bytes

such as image data. It should be used to read byte-oriented data for example to read image, audio, video etc.

Example: Write a program to read data from myfile.txt using FileInputStream and display
it on monitor.

import java.io.*;

class ReadFile

{

public static void main(String args[])

{

FileInputStream fin=new FileInputStream("myfile.txt");

System.out.println(“File Contents:”);

int ch;

while((ch=fin.read())!=-1)

{

System.out.println((char)ch);

}

fin.close();

}

}

Output: javac ReadFile.java
 java ReadFile

JAVA PROGRAMMING Page 79

UNIT V:

GUI Programming with Java – AWT class hierarchy, component, container,panel, window, frame,

graphics.

AWT controls: Labels, button, text field, check box, check box groups, choices, lists, scrollbars, and graphics.

Layout Manager – Layout manager types: border, grid and flow.

Swing – Introduction, limitations of AWT, Swing vs AWT.

GUI PROGRAMMING WITH JAVA

ABSTRACT WINDOW TOOLKIT (AWT)
Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based application in java. Java

AWT components are platform-dependent i.e. components are displayed according to the view of operating

system. AWT is heavyweight i.e. its components uses the resources of system. The Abstract Window

Toolkit(AWT) support for applets. The AWT contains numerous classes and methods that allow you to create

and manage windows.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

AWT Classes

The AWT classes are contained in the java.awt package. It is one of Java's largest packages.

Class Description

AWTEvent Encapsulates AWT events.

AWTEventMulticaster Dispatches events to multiple listeners.

BorderLayout Border layouts use five components:

North, South, East, West, and Center.

CardLayout Card layouts emulate index cards. Only the one on top is showing.

Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.

CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.

Color Manages colors in a portable, platform-independent fashion.

Component An abstract superclass for various AWT components.

Container A subclass of Component that can hold other components.

Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.

Dimension Specifies the dimensions of an object. The width is stored in

width , and the height is stored in height .

Event Encapsulates events.

FlowLayout The flow layout manager. Flow layout positions components left

to right, top to bottom.

Frame Creates a standard window that has a title bar, resize corners, and a menu bar.

Graphics Encapsulates the graphics context.

JAVA PROGRAMMING Page 80

Control Fundamentals

The AWT supports the following types of controls:

3. Labels

4. Push buttons

5. Check boxes

6. Choice lists

7. Lists

8. Scroll bars

9. Text editing

User interaction with the program is of two types:

CUI (Character User Interface): In CUI user interacts with the application by typing characters or commands.

 In CUI user should remember the commands. It is not user friendly.

2. GUI (Graphical User Interface): In GUI user interacts with the application through graphics.

GUI is user friendly. GUI makes application attractive. It is possible to simulate real object in

GUI programs. In java to write GUI programs we can use awt (Abstract Window Toolkit)

package.

Java AWT Class Hierarchy
The hierarchy of Java AWT classes is given below.

Container
The Container is a component in AWT that can contain other components like buttons, textfields, labels etc.

The classes that extend Container class are known as container such as Frame, Dialog and Panel.

JAVA PROGRAMMING Page 81

Window
The window is the container that has no borders and menu bars. You must use frame, dialog or

 another window for creating a window.

Panel
The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.

Frame
The Frame is the container that contain title bar and can have menu bars. It can have other

components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size(width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by

default false.

Listeners and Listener Methods:
Listeners are available for components. A Listener is an interface that listens to an event from a component.

 Listeners are available in java.awt.event package. The methods in the listener interface are to be implemented,

when using that listener.

JAVA PROGRAMMING Page 82

Layout Managers

A layout manager arranges the child components of a container. It positions and sets the size of components

within the container's display area according to a particular layout scheme.

The layout manager's job is to fit the components into the available area, while maintaining the proper spatial

relationships between the components. AWT comes with a few standard layout managers that will collectively

handle most situations; you can make your own layout managers if you have special requirements.

LayoutManager at work

Every container has a default layout manager; therefore, when you make a new container, it comes with

a LayoutManager object of the appropriate type. You can install a new layout manager at any time with

the setLayout() method. Below, we set the layout manager of a container to a BorderLayout:

setLayout (new BorderLayout());

Every component determines three important pieces of information used by the layout manager in placing

and sizing it: a minimum size, a maximum size, and a preferred size.

These are reported by the getMinimumSize(), getMaximumSize(), and getPreferredSize(), methods of

Component, respectively.

When a layout manager is called to arrange its components, it is working within a fixed area. It usually

begins by looking at its container's dimensions, and the preferred or minimum sizes of the child

components.

Layout manager types

Flow Layout
FlowLayout is a simple layout manager that tries to arrange components with their preferred sizes,

from left to right and top to bottom in the display. A FlowLayout can have a specified justification of

LEFT, CENTER, or RIGHT, and a fixed horizontal and vertical padding.

By default, a flow layout uses CENTER justification, meaning that all components are centered within the

area allotted to them. FlowLayout is the default for Panel components like Applet.

JAVA PROGRAMMING Page 83

The following applet adds five buttons to the default FlowLayout.

import java.awt.*;

/*

<applet code="Flow" width="500" height="500">

</applet>

*/

public class Flow extends java.applet.Applet

{

public void init()

{

//Default for Applet is FlowLayout

add(new Button("One"));

add(new Button("Two"));

add(new Button("Three"));

add(new Button("Four"));

add(new Button("Five"));

}

}

If the applet is small enough, some of the buttons spill over to a second or third row.

Grid Layout
GridLayout arranges components into regularly spaced rows and columns. The components are

arbitrarily resized to fit in the resulting areas; their minimum and preferred sizes are consequently ignored.

GridLayout is most useful for arranging very regular, identically sized objects and for allocating space

for Panels to hold other layouts in each region of the container.

GridLayout takes the number of rows and columns in its constructor. If you subsequently give it too

many objects to manage, it adds extra columns to make the objects fit. You can also set the number of

rows or columns to zero, which means that you don't care how many elements the layout manager packs

in that dimension.

For example, GridLayout(2,0) requests a layout with two rows and an unlimited number of

columns; if you put ten components into this layout, you'll get two rows of five columns each. The

following applet sets a GridLayout with three rows and two columns as its layout manager;

import java.awt.*;

/*

<applet code="Grid" width="500" height="500"> </applet>

*/

public class Grid extends java.applet.Applet

{

public void init()

{

setLayout(new GridLayout(3, 2));

JAVA PROGRAMMING Page 84

add(new Button("One"));

add(new Button("Two")); add(new Button("Three")); add(new Button("Four"));

add(new Button("Five"));

}

}

The five buttons are laid out, in order, from left to right, top to bottom, with one empty spot.

Border Layout
BorderLayout is a little more interesting. It tries to arrange objects in one of five geographical locations:

"North," "South," "East," "West," and "Center," possibly with some padding between.

BorderLayout is the default layout for Window and Frame objects. Because each component is
associated with a direction, BorderLayout can manage at most five components; it squashes or stretches
those components to fit its constraints.
When we add a component to a border layout, we need to specify both the component and the position at

which to add it. To do so, we use an overloaded version of the add() method that takes an additional argument

as a constraint.

The following applet sets a BorderLayout layout and adds our five buttons again, named for their locations;

import java.awt.*;

/*

<applet code="Border" width="500" height="500">

</applet>

*/

public class Border extends java.applet.Applet

{

public void init()

{

setLayout(new java.awt.BorderLayout());

add(new Button("North"), "North"); add(

new Button("East"), "East");

add(new Button("South"), "South");

add(new Button("West"), "West"); add(new Button("Center"), "Center");

}

}

Compile: javac Border.java

Run : appletviewer Border.java

JAVA PROGRAMMING Page 85

Java AWT Example
To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

1. By extending Frame class (inheritance)

2. By creating the object of Frame class (association)

Simple example of AWT by inheritance
import java.awt.*;

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30); // setting button position

 add(b); //adding button into frame

setSize(300,300); //frame size 300 width and 300 height

setLayout(null); //no layout manager

 setVisible(true); //now frame will be visible

}

public static void main(String args[]){
First f=new First();

}

}

Simple example of AWT by association
import java.awt.*;
class First2{

First2(){

Frame f=new Frame();

Button b=new Button("click me");

b.setBounds(30,50,80,30);

 f.add(b);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[]){

First2 f=new First2();

}

}

JAVA PROGRAMMING Page 86

AWT controls

Labels:
The easiest control to use is a label. A label is an object of type Label, and it contains a string, which it displays.

 Labels are passive controls that do not support any interaction with the user.

// Demonstrate Labels import java.awt.*; import java.applet.*; /*

<applet code="LabelDemo" width=300 height=200>

</applet> */

public class LabelDemo extends Applet

{

public void init()

{

Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

add labels to applet window add(one);

add(two); add(three);

}

}

Buttons:

The most widely used control is the push button. A push button is a component that contains a

label and that generates an event when it is pressed. Push buttons are objects of type Button.

Button class is useful to create push buttons. A push button triggers a series of events.

To create push button: Button b1 =new Button("label");

To get the label of the button: String l = b1.getLabel();

 To set the label of the button: b1.setLabel("label");

To get the label of the button clicked: String str = ae.getActionCommand();

 Demonstrate Buttons

 import java.awt.*;

import java.awt.event.*;

 import java.applet.*;

/* <applet code="ButtonDemo" width=250 height=150>

</applet> */

public class ButtonDemo extends Applet implements ActionListener

{

String msg = "";

Button yes, no, maybe;

JAVA PROGRAMMING Page 87

public void init()

{

yes = new Button("Yes"); no = new Button("No");

maybe = new Button("Undecided"); add(yes);

add(no); add(maybe);

yes.addActionListener(this); no.addActionListener(this); maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

String str =

ae.getActionCommand();

if(str.equals("Yes"))

{

msg = "You pressed Yes.";

}

else if(str.equals("No"))

{

msg = "You pressed No.";

}

else

{

msg = "You pressed Undecided.";

}

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg, 6, 100);

}

}

Check Boxes:
A check box is a control that is used to turn an option on or off. It consists of a small box that can either

contain a check mark or not. There is a label associated with each check box that describes what option the box

represents. You change the state of a check box by clicking on it. Check boxes can be used individually or as

part of a group.

 Demonstrate check boxes

 import java.awt.*;

import java.awt.event.*;

import java.applet.*;

JAVA PROGRAMMING Page 88

/*

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener

{

String msg = "";

checkbox Win98, winNT, solaris, mac;

public void init()

{

win98 = new Checkbox("Windows 98/XP", null, true);

 winNT = new Checkbox("Windows NT/2000");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

add(Win98);

add(winNT);

add(solaris);

add(mac);

Win98.addItemListener(this);

winNT.addItemListener(this); solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g)

{

msg = "Current state: "; g.drawString(msg, 6, 80);

msg = " Windows 98/XP: " + Win98.getState(); g.drawString(msg, 6, 100);

msg = " Windows NT/2000: " + winNT.getState(); g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState(); g.drawString(msg, 6, 140);

msg = " MacOS: " + mac.getState(); g.drawString(msg, 6, 160);

JAVA PROGRAMMING Page 89

TextField:

The TextField class implements a single-line text-entry area, usually called an edit control. Text fields allow

the user to enter strings and to edit the text using the arrow keys, cut and paste keys, and mouse selections.

// Demonstrate text field. import java.awt.*; import java.awt.event.*; import java.applet.*;

/*

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet implements ActionListener

{

TextField name, pass;

public void init()

{

Label namep = new Label("Name: ", Label.RIGHT);

Label passp = new Label("Password: ", Label.RIGHT);

name = new TextField(12);

pass = new TextField(8);

 pass.setEchoChar('?');

add(namep);

add(name);

 add(passp);

 add(pass);

// register to receive action events

name.addActionListener(this);

pass.addActionListener(this);

}

// User pressed Enter.

public void actionPerformed(ActionEvent ae)

{

repaint();

}

public void paint(Graphics g)

{

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Selected text in name: " + name.getSelectedText(), 6, 80);

 g.drawString("Password: " + pass.getText(), 6, 100);

}

}

JAVA PROGRAMMING Page 90

TextArea:
Sometimes a single line of text input is not enough for a given task. To handle these situations,

 the AWT includes a simple multiline editor called TextArea .

DemonstrateT extArea

import java.awt.*;

import j ava.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250> </applet>

*/

public class TextAreaDemo extends Applet

{

public void init()

{

String val = "There are two ways of constructing " + "a software design.\n" + "One way is to make it so

simple\n" + "that there are obviously no deficiencies.\n" + "And the other way is to make it so complicated\n"

+ "that there are no obvious deficiencies.\n\n" + " -C.A.R. Hoare\n\n"

+ "There's an old story about the person who wished\n" + "his computer were as easy to use as his

telephone.\n" + "That wish has come true,\n" + "since I no longer know how to use my telephone.\n\n" + " -

Bjarne Stroustrup, AT&T, (inventor of C++)";

TextArea text = new TextArea(val, 10, 30);

 add(text);

}

}

CheckboxGroup
It is possible to create a set of mutually exclusive check boxes in which one and only one check box in the

group can be checked at any one time. These check boxes are often called radio buttons. A Radio button

represents a round shaped button such that only one can be selected from a panel. Radio button can be created

using CheckboxGroup class and Checkbox classes.

JAVA PROGRAMMING Page 91

· To create a radio button:

CheckboxGroup cbg = new CheckboxGroup ();

Checkbox cb = new Checkbox ("label", cbg, true);

· To know the selected checkbox:

Checkbox cb = cbg.getSelectedCheckbox ();
· To know the selected checkbox label:

· String label = cbg.getSelectedCheckbox().getLabel ();

 Demonstrate check box group.

 import java.awt.*;

import java.awt.event.*;

 import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener

{

String msg = "";

Checkbox Win98, winNT, solaris, mac;

CheckboxGroup cbg;

public void init() {

cbg = new CheckboxGroup();

Win98 = new Checkbox("Windows 98/XP", cbg, true);

 winNT = new Checkbox("Windows NT/2000", cbg, false);

 solaris = new Checkbox("Solaris", cbg, false);

mac = new Checkbox("MacOS", cbg, false);

add(Win98);

add(winNT);

 add(solaris);

 add(mac);

Win98.addItemListener(this);

 winNT.addItemListener(this);

 solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

JAVA PROGRAMMING Page 92

Choice Controls
The Choice class is used to create a pop-up list of items from which the user may choose. Thus,

 a Choice control is a form of menu. Choice menu is a popdown list of items. Only one item can be selected.

· To create a choice menu:

Choice ch = new Choice();

· To add items to the choice menu:

ch.add ("text");

· To know the name of the item selected from the choice menu:
String s = ch.getSelectedItem ();

· To know the index of the currently selected item:

int i = ch.getSelectedIndex();
This method returns -1, if nothing is selected.

//Demonstrate Choice lists.

import java.awt.*;

import java.awt.event.*;

 import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180> </applet>

*/

public class ChoiceDemo extends Applet implements ItemListener

{

Choice os, browser;

String msg = "";

public void init() {

 os = new Choice();

browser = new Choice();

//add items to os list

os.add("Windows 98/XP");

os.add("Windows NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("InternetExplorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

 browser.select("Netscape 4.x");

// add choice lists to window add(os);

add(browser);

// register to receive item events

 os.addItemListener(this);

browser.addItemListener(this);
}

JAVA PROGRAMMING Page 93

public void itemStateChanged(ItemEvent ie) {

 repaint();

}

// Display current selections.

public void paint(Graphics g)

{

 msg = "Current OS: ";

msg += os.getSelectedItem();

 g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Lists
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the Choice object, which

shows only the single selected item in the menu, a List object can be constructed to show any number of

choices in the visible window. It can also be created to allow multiple selections.

 List provides these constructors:

List()

List(int numRows)

List(int numRows , boolean multipleSelect)

A List box is similar to a choice box, it allows the user to select multiple items.

· To create a list

box:

(or)

List lst = new List();

List lst = new List (3, true);

This list box initially displays 3 items. The next parameter true represents that the user can select more than one

item from the available items. If it is false, then the user can select only one item.

= To add items to the list box: lst.add("text");

= To get the selected items: String x[] = lst.getSelectedItems();

= To get the selected indexes: int x[] = lst.getSelectedIndexes ();

//Demonstrate Lists.

 import java.awt.*;

import java.awt.event.*;

import java.applet.*; /*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener

{

List os, browser; String msg = "";

 public void init() {

 os = new List(4, true);

JAVA PROGRAMMING Page 94

browser = new List(4, false);

//add items to os list

os.add("Windows 98/XP");

os.add("Windows

NT/2000");

os.add("Solaris");

os.add("MacOS");

// add items to browser list

browser.add("Netscape 3.x");

browser.add("Netscape 4.x");

browser.add("Netscape 5.x");

browser.add("Netscape 6.x");

browser.add("Internet Explorer 4.0");

browser.add("InternetExplorer 5.0");

browser.add("Internet Explorer 6.0");

browser.add("Lynx 2.4");

 browser.select(1);

// add lists to window

add(os);

add(browser);

 //register to receive action events

os.addActionListener(this);

browser.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

 repaint();

}

//Display current selections

 public void paint(Graphics g)

{

int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and maximum. Scroll bars may be

oriented horizontally or vertically. Scrollbar class is useful to create scrollbars that can be attached to a frame or

text area. Scrollbars can be arranged vertically or horizontally.

JAVA PROGRAMMING Page

 To create a scrollbar :

Scrollbar sb = new Scrollbar (alignment, start, step, min, max);

 alignment: Scrollbar.VERTICAL, Scrollbar.HORIZONTAL

start: starting value (e.g. 0)

step: step value (e.g. 30) // represents scrollbar length min: minimum value (e.g. 0)

max: maximum value (e.g. 300)

· To know the location of a scrollbar: int n = sb.getValue ();

· To update scrollbar position to a new position: sb.setValue (int position);

· To get the maximum value of the scrollbar: int x = sb.getMaximum ();

· To get the minimum value of the scrollbar: int x = sb.getMinimum ();

· To get the alignment of the scrollbar: int x = getOrientation ();
This method return 0 if the scrollbar is aligned HORIZONTAL, 1 if aligned VERTICAL.

// Demonstrate scroll bars.

import java.awt.*;

import java.awt.event.*;

 import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet implements AdjustmentListener, MouseMotionListener

{

 String msg = ""; Scrollbar vertSB, horzSB;

public void init() {

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

vertSB = new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, height);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, width);

add(vertSB);

add(horzSB);

// register to receive adjustment events

vertSB.addAdjustmentListener(this);

horzSB.addAdjustmentListener(this);

addMouseMotionListener(this);

}

public void adjustmentValueChanged(AdjustmentEvent ae) {

 repaint();

}

// Update scroll bars to reflect mouse dragging.

 public void mouseDragged(MouseEvent me) {

 int x = me.getX();

int y = me.getY();

vertSB.setValue(y);

horzSB.setValue(x);

repaint();

}

//Necessary for MouseMotionListener

public void mouseMoved(MouseEvent me) {

}

//Display current value of scroll bars.

public void paint(Graphics g) {

msg = "Vertical: " + vertSB.getValue();

 msg += ", Horizontal: " + horzSB.getValue();

 g.drawString(msg, 6, 160);

// show current mouse drag position

g.drawString("*", horzSB.getValue(), vertSB.getValue());

}

}

Graphics
The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to a window.

Graphics class and is obtained in two ways:

 It is passed to an applet when one of its various methods, such as paint() or update(), is called.

 It is returned by the getGraphics() method of Component.

Drawing Lines
Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX,startY and ends at endX,endY.

The following applet draws several lines:

//Draw lines

import java.awt.*;

 import java.applet.*;

 /*

<applet code="Lines" width=300 height=200> </applet>

*/

public class Lines extends Applet

{ public void paint(Graphics g) { g.drawLine(0, 0, 100, 100);

g.drawLine(0, 100, 100, 0);

g.drawLine(40, 25, 250, 180);

g.drawLine(75, 90, 400, 400);

g.drawLine(20, 150, 400, 40);

g.drawLine(5, 290, 80, 19);

 }
}

Drawing Rectangles
The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively. They are shown

here:

void drawRect(int top, int left, int width, int height)

void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top, left. The dimensions of the rectangle are specified by width and

height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown here:

 void drawRoundRect(int top, int left, int width, int height,int xDiam, int yDiam)

void fillRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)

// Draw rectangles

import java.awt.*;

import java.applet.*;

/*

<applet code="Rectangles" width=300 height=200> </applet>

*/

public class Rectangles extends Applet {

 public void paint(Graphics g) {

g.drawRect(10, 10, 60, 50);

g.fillRect(100,10, 60, 50);

g.drawRoundRect(190, 10,60, 50, 15, 15);

 g.fillRoundRect(70, 90,140, 100, 30, 40);

}}

Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval().

These method s are shown here:

void drawOval(int top, int left, int width, int height)

void fillOval(int top, int left, int width, int height)

// Draw Ellipses

import java.awt.*;

 import java.apple t.*;

/*

<applet code="Ellipses" width=300 height=200> </applet>

*/

public class Ellipses extends Applet

{

public void paint(Graphics g) {

g.drawOval(10, 10, 50, 50);

g.fillOval(100, 10, 75, 50);

g.drawOval(190, 10, 90, 30);

g.fillOval(70, 90, 140, 100);

}

}

JAVA PROGRAMMING Page

Drawing Arcs

Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle,int sweepAngle)

void fillArc(int top, int left, int width, int height, int startAngle,int sweepAngle)

 The arc is bounded by the rectangle whose upper-left corner is specified by top, left and whose width and

height are specified by width and height.

 The arc is drawn from startAngle through the angular distance specified by sweepAngle. Angles are specified

in degrees.

 The arc is drawn counterclockwise if sweepAngle is positive, and clockwise if sweepAngle is negative.

Therefore, to draw an arc from twelve o’clock to six o’clock, the start angle would be 90 and the sweep

angle 180.

The following applet draws several arcs:

//Draw Arcs

import java.awt.*;

 import java.applet.*;

/*

<applet code="Arcs" width=300 height=200>

</applet>

*/

public class Arcs extends Applet {

public void paint(Graphics g) {

g.drawArc(10, 40, 70, 70, 0, 75);

g.fillArc(100, 40, 70, 70, 0, 75);

g.drawArc(10, 100, 70, 80, 0, 175);

g.fillArc(100, 100, 70, 90, 0, 270);

g.drawArc(200, 80, 80, 80, 0, 180);

}}

Drawing Polygons
It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(), shown here:

void drawPolygon(int x[], int y[], int numPoints)

 void fillPolygon(int x[], int y[], int numPoints)

 The polygons endpoints are specified by the coordinate pairs contained within the x and y arrays.

 The number of points defined by x and y is specified by numPoints.

 There are alternative forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws an hour glass shape:

// Draw Polygon

import java.awt.*;

 import java.applet.*;

/*

<applet code="HourGlass"width=230 height=210>

</applet>

*/

public class HourGlass extends Applet {

public void paint(Graphics g) {

 int xpoints[] = {30, 200, 30, 200, 30};

int ypoints[] = {30, 30, 200, 200, 30};

int num = 5;

JAVA PROGRAMMING Page

g.drawPolygon(xpoints, ypoints, num);

}}

SWINGS
 Swing is a set of classes that provides more powerful and flexible components than are possible with the

AWT. Swing is a GUI widget toolkit for Java. It is part of Oracle's Java Foundation Classes (JFC) that is

used to create window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit)

API and entirely written in java.

 In addition to the familiar components, such as buttons, check boxes, and labels, Swing supplies several

exciting additions, including tabbed panes, scroll panes, trees, and tables. Even familiar components such

as buttons have more capabilities in Swing. For example, a button may have both an image and a text

string associated with it. Also, the image can be changed as the state of the button changes.

 Unlike AWT components, Swing components are not implemented by platform specific code. Instead,

they are written entirely in Java and, therefore, are platform-independent. The term lightweight is used to

describe such elements.

 The javax.swing package provides classes for java swing API such as JButton, JTextField, JTextArea,
JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Differences between AWT and Swing

AWT Swing

AWT components are called Heavyweight

component.

Swings are called light weight component

because swing components sits on the top of

AWT components and do the work.

AWT components are platform dependent. Swing components are made in purely java and

they are platform independent.

AWT components require java.awt package. Swing

package.

components require javax.swing

AWT is a thin layer of code on top of the OS. Swing is much larger. Swing also has very

much richer functionality.

AWT stands for Abstract windows toolkit. Swing is also called as JFC’s (Java Foundation

classes).

This feature is not supported in AWT. We can have different look and feel in Swing.

Using AWT, you have to implement a lot of

things yourself.

Swing has them built in.

JAVA PROGRAMMING Page

The Swing component classes are:
Class Description

AbstractButton Abstract superclass for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set ofbuttons.

ImageIcon Encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (combination of a drop-down list & text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

 JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

Hierarchy for Swing components:

Swing has many advanced features like JTabel,

Jtabbed pane which is not available in AWT.

Also.Swing components are called

"lightweight" because they do not require a

native OS object to implement their

functionality. JDialog and JFrame are

heavyweight, because they do have a peer. So

components like JButton, JTextArea, etc., are

lightweight because they do not have an OS

peer.

This feature is not available in AWT.

JAVA PROGRAMMING Page

BUTTONS
Swing buttons provide features that are not found in the Button class defined by the AWT.

For example, you can associate an icon with a Swing button. Swing buttons are subclasses of the

AbstractButton class, which extends JComponent. AbstractButton contains many methods that allow you

to control the behavior of buttons, check boxes, and radio buttons.

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an icon, a string, or both to be

associated with the push button. Some of its constructors are shown here:

· To create a JButton with text: JButton b = new JButton (“OK”);

· To create a JButton with image: JButton b = new JButton (ImageIcon ii);

· To create a JButton with text & image: JButton b = new JButton (“OK”, ImageIcon ii);

It is possible to create components in swing with images on it. The image is specified by ImageIcon class

object.

import java.awt.*;

import java.awt.event.*;

 import javax.swing.*;

/*

<applet code="JButtonDemo" width=250 height=300>

</applet>

*/

public class JButtonDemo extends JApplet implements ActionListener {

 JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add buttons to content pane

ImageIcon france = new ImageIcon("france.gif");

JButton jb = new JButton(france);

jb.setActionCommand("France");

 jb.addActionListener(this);

contentPane.add(jb);

ImageIcon germany = new ImageIcon("germany.gif")

; jb = new JButton(germany);

jb.setActionCommand("Germany");

 jb.addActionListener(this);

contentPane.add(jb);

ImageIcon italy = new ImageIcon("italy.gif");

jb = new JButton(italy);

 jb.setActionCommand("Italy");

jb.addActionListener(this);

contentPane.add(jb);

ImageIcon japan = new ImageIcon("japan.gif");

 jb = new JButton(japan);

jb.setActionCommand("Japan");

jb.addActionListener(this);

contentPane.add(jb);

// Add text field to content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

public void actionPerformed(ActionEvent ae)

{

 jtf.setText(ae.getActionCommand());

}

}

Limitations of AWT:

 The AWT defines a basic set of controls, windows, and dialog boxes that support a usable, but

limited graphical interface.

 One reason for the limited nature of the AWT is that it translates its various visual

components into their corresponding, platform-specific equivalents or peers. This means that

the look and feel of a component is defined by the platform, not by java.

 Because the AWT components use native code resources, they are referred to as heavy

weight.

The use of native peers led to several problems.

 First, because of variations between operating systems, a component might look, or even act,

differently on different platforms. This variability threatened java’s philosophy: write once,

run anywhere.

 Second, the look and feel of each component was fixed and could not be changed.

 Third, the use of heavyweight components caused some frustrating restrictions.

Due to these limitations Swing came and was integrated to java. Swing is built on the AWT. Two key

Swing features are: Swing components are light weight, Swing supports a pluggable look and feel.

JAVA PROGRAMMING Page

	Department of Electronics and Communication Engineering
	(Autonomous Institution – UGC, Govt. of India)
	3/-/-/3
	inheritance, data binding, polymorphism etc.
	OOPs (Object Oriented Programming System)
	Object
	Class
	Polymorphism
	Encapsulation
	Benefits of Inheritance

	Java Programming- History of Java
	Java Version History
	Features of Java
	Java Comments
	Types of Java Comments
	Java Single Line Comment
	Syntax:
	Example:

	Java Multi Line Comment
	Syntax:
	Example:

	Java Documentation Comment
	Data Types
	Java Variable Example: Add Two Numbers

	Variables and Data Types in Java
	Types of Variable
	1) LocalVariable
	2) Instance Variable
	3) Staticvariable

	Scope and Life Time of Variables
	The scope of a variable defines the section of the code in which the variable is visible. As a general rule, variables that are defined within a block are not accessible outside that block. The lifetime of a variable refers to how long the variable ex...
	Instance variables are those that are defined within a class itself and not in any method or constructor of the class. They are known as instance variables because every instance of the class (object) contains a copy of these variables. The scope of i...
	These are the variables that are defined in the header oaf constructor or a method. The scope of these variables is the method or constructor in which they are defined. The lifetime is limited to the time for which the method keeps executing. Once the...
	A local variable is the one that is declared within a method or a constructor (not in the header). The scope and lifetime are limited to the methoditself.

	Operators in java
	Operators Hierarchy
	Types of Expressions

	Java Type casting and Type conversion
	Widening or Automatic Type Conversion
	Narrowing or Explicit Conversion

	Control Flow Statements
	The “if” Statement
	if(condition) {
	}

	Creating a Stand-Alone Java Application
	cd Desktop
	cd ..
	Declaring Array Variables:
	Example:
	Example: (1)
	Processing Arrays:
	Example: (2)
	Types of java constructors
	Syntax of default constructor:
	Example of default constructor
	Output:
	Output: (1)
	Java -Methods
	Syntax
	Syntax (1)

	Static Fields and Methods
	Java static variable
	Advantage of static variable
	Understanding problem without static variable

	Example of static variable

	Java static method
	Example of static method
	Example of static block class A2{

	Access Control
	Access Modifiers in java
	private access modifier
	Simple example of private access modifier
	2) default accessmodifier
	3) protected accessmodifier
	4) public accessmodifier
	Understanding all java access modifiers

	this keyword in java
	Usage of java this keyword

	Method Overloading in java
	Method Overloading: changing no. of arguments
	Method Overloading: changing data type of arguments
	Recursion in Java
	else

	Java Garbage Collection
	Advantage of Garbage Collection

	gc() method
	Simple Example of garbage collection in java
	public class TestGarbage1{

	Java String
	String Literal

	Unit-2 Inheritance in Java
	Why use inheritance in java
	Syntax of Java Inheritance
	Multilevel Inheritance Example
	Hierarchical Inheritance Example
	super keyword in java
	Usage of java super Keyword
	super is used to refer immediate parent class instance variable.

	Final Keyword in Java
	Object class in Java
	Method Overriding in Java
	Usage of Java Method Overriding
	Rules for Java Method Overriding

	Example of method overriding Class Vehicle{

	Abstract class in Java
	Example abstract class
	abstractmethod
	Example of abstract class that has abstract method

	Interface in Java
	Internal addition by compiler
	Understanding relationship between classes and interfaces

	Multiple inheritance in Java by interface

	Java Inner Classes
	Syntax of Inner class
	Types of Nested classes

	Java Package
	How to run java package program
	Using fully qualified name

	UNIT-3
	What is exception
	Advantage of Exception Handling
	Types of Exception
	Hierarchy of Java Exception classes
	Java try block
	Syntax of java try-catch
	Java catch block
	Problem without exception handling
	Solution by exception handling
	Java Multi catch block
	Java nested try example
	Java finally block
	Usage of Java finally
	Java throw keyword
	Java throw keyword example
	else
	Output:
	Java throws keyword
	Java throws example
	Java Custom Exception
	else (1)

	Multithreading
	Advantages of Java Multithreading
	2) You can perform many operations together so it savestime.

	Life cycle of a Thread (Thread States)
	How to create thread
	There are two ways to create a thread:
	Thread class:
	Commonly used Constructors of Thread class:
	Commonly used methods of Thread class:
	Runnable interface:
	Starting a thread:
	Java Thread Example by extending Thread class
	Java Thread Example by implementing Runnable interface class Multi3 implements Runnable{
	Priority of a Thread (Thread Priority):
	3 constants defined in Thread class:

	Java synchronized method
	UNIT 4
	Advantages:
	Restrictions of Applets of Applets Vs Applications
	Initialization:
	

	
	Dead/Destroyed:
	There are two ways to run an applet.
	Example Program:
	TYPES OF APPLETS

	The Delegation Event Model
	
	EVENTS
	EVENT SOURCES
	Here is the general form:

	EVENT LISTENERS
	EVENT CLASSES
	It’s one constructor is shown here:
	The MouseEvent Class
	The WindowEvent Class
	EVENT LISTENER INTERFACES
	The general forms of these methods are shown here:
	The general forms of these methods are shown here: (1)
	Their general forms are shown here:

	Handling Keyboard Events

	FILES AND STREAMS
	Stream
	Byte Streams
	Example
	Now let's have a file input.txt with the following content:
	Example (1)
	Java FileOutputStream class
	DataInputStream dis=new DataInputStream(System.in);
	Creating a Text file:

	Java FileInputStream class
	Example: Write a program to read data from myfile.txt using FileInputStream and display it on monitor.

	UNIT V:
	GUI PROGRAMMING WITH JAVA
	AWT Classes
	Class Description
	User interaction with the program is of two types:

	Java AWT Class Hierarchy
	Container
	Window
	Panel
	Frame

	Listeners and Listener Methods:
	Layout Managers
	LayoutManager at work
	setLayout (new BorderLayout());
	Compile: javac Border.java
	Simple example of AWT by inheritance import java.awt.*;
	Simple example of AWT by association import java.awt.*;

	AWT controls
	Labels:
	Buttons:
	Check Boxes:
	TextField:
	TextArea:
	CheckboxGroup
	Choice Controls
	Lists
	Scroll Bars
	Drawing Lines
	Drawing Rectangles
	Drawing Ellipses and Circles
	Drawing Polygons

	}}
	SWINGS
	Differences between AWT and Swing
	Class Description
	Hierarchy for Swing components:

	BUTTONS

